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There are many books deanng in an indi 'ciz}a!
way with elementary aspects of Algebra, Géq:h; try,
or Analysis. In recent years various advanced
topics have been treated exhaustively, &ué’ there is
need in English of books which emphasize funda-
mental  principles while presentifig ) the material
in o less elaborate manner, A\ Jeries of books,
published under the auspicesdf the University
of Toronto and bearing the “title “Mathematical
Expositions,” represents G attempt to meet this
need., It will be the first concern of each author
to take into account e natwral background of
his subject and fo Prosent it o readable manner.

7

).\
L)
o I d
pN\Y;
LD
N
i
7\
%w
R\
N
O



Brianchon's Theorem
and the concurrence of angle-bisectors,
{See pages 59 and 200.)
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PREFACE

HE name non-Euclidean was used by Gauss to describe a”)
system of geometry which differs from Euclid’s in.its
properties of parallelism. Such a system was developedhinde-
pendently by Bolyai in Hungary and Lobatschewsk i Russia,
about 120 years ago. Another system, differing. nor radically
from Euclid's, was suggested later by Rieman‘n Germany
and Cayley in England. The subject was gified in 1871 by
Klein, who gave the names parabolic, hyperbolic, and elliptic
to the respective systems of Euclid, ;Eﬂljrai-Lobatschewsky,
and Riemann-Cayley. Since then, @\vast literature has accu-
mulated, and it is with some di tiénce that I venture to add

a fresh exposition. o

After an historical intnodh’ctory chapter (which can be
omitted without impairing ‘the main development), I devote
three chapters to a survey of real projective geometry. Al-
though many text-bjéks on that subject have appeared, most
of those in English’ stress the connection with Euclidean
geometry. Motesver, it is customary to define a conic and
then de:‘ivg“t{l@}}elation of pole and polar, whereas the appli-
cation tomos-Euclidean geometry makes it more desirable to
define tite polarity first and then look for a conic (which may
or mady\not exist)! This treatment of projective geometry, due
@oﬂ Staudt, has been found satisfactory in a course of
lettures for undergraduates.

In Chapters vin and 1x, the Euclidean and hyperbolic
geometries are built up axiomatically as special cases of a more
general “descriptive geometry.” Following Veblen, T develop
the properties of parallel lines (§8.9) before introducing con-

- ¥il
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gruence. For the introduction of idegl elements, such as points
at infinity, I employ the method of Pasch and F. Schur. In
this manner, hyperbolic geometry is eventually identified with
the geometry of Klein’s projective metric as applied to a real
conic or quadric (Cayley's Absolute, §§8.1, 9.7). This efab-
orate process of identification is unnecessary in the gcage of
elliptic geometry. For, the axioms of real projective géometry
(§2.1) can be taken over as they stand. Any a:gicims of con-
gruence that might be proposed would quicklylead to the
absolute polarity, and so are conveniently“replaced by the
simple statement that one uniform polanty 1s singled out as
a means for defining congruence. N
Von Staudt's extension of real sf_j)af:e to complax space is
logically similar to Pasch's exten$ion of descriptive space to
projective space, but is far harder for students to grasp; so I
prefer to deal with real space alone, expressing distance and
. angle in terms of real cresg ratios. I hope this restriction to
real space will remove some of the mystery that is apt to
surround such concefts as Clifford parallels (§§7.2, 7.5). But
Klein's comple Qeﬁtment is given as an alternative (at the
end of Chapte.:\tv Vil).
© In order to-emphasize purely geometrical ideas, I introduce
the vario@$geometries synthetically. But coordinates are used
for the‘d}nvatlon of trigonometrical formulae in Chapter xi1.
wughly speaking, the chapters increase in difficulty to the
rmd le of the book. (Chapter viI may well be omitted on first
/reading, although it is my own favourite.} Then they become
progressively easier. For a rapid survey of the subject, just
read the first and last.
“Mathematical Expositions, No. 2" is to some extent a
- sequel to No. 1. (See especially pages 46, 50, 57, 156 of No. 1.)
But No. 1 néturally has a far wider scope, and No. 2 can be

read independently. A certain overlapping of subject-matter
was inevitable.

N



PREFACE _ ix

For reading various parts of the manuscript in preparation,
and making valuable suggestions for its improvement, 1 offer
cordial thanks to m¥ colleagues on the Editorial Board, espe-
cially Richard Brauer and G. de B. Robinson; also to N. 8.
Mendelsohn of the Department of Mathematics, to S. H.
Gould of the Department of Classics, and to A. W. Tucker Qf

Princeton University, Q \~ }
H. 5. M. C OX;ET\E}t
The University of Toronto, ) '\ N
May, 1942. £
~N\
RS
\
'x:\\.,
&/
)

PREFACE T0 $SBEOND EnrTion

Apart from a number ofé’;ﬁall corrections, there is an im-
proved treatment of qu(\?&mmns (pp. 123-125) inspired by a
remark of Emst Wlt\\,

H.S. M. C.
October, 1946, '

£
o\,

t 2
.‘\./



QO
S

&
o

O
4
“Might)&]e charm
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CHAPTER 1

THE HISTORICAL DEVELOPMENT OF NON-EUCLIDEAN
GEOMETRY '

1.1. Euclid. Geometry, as we see from its name, begah‘
as a practical science of measurement. As such, it was, used
in Egypt about 2000 B.c. Thence it was brought to Greece
by Thales {640-546 B.C.), who began the process of a.Qstractlon
by which positions and straight edges are idealized\into points
and lines. Much progress was made by Pythagoras and his
disciples. Among others, Hippocrates a xe&lpted a logical
presentation in the form of a chain of prdﬁ:ositions based on a
few definitions and assumptions. ThlS was greatly improved
by Euclid {about 300 B.C.), whose Eiements became one of the
most widely read books in the, wnrld The geometry taught .
in high school today is essentla]ly a part of the Elements, with
a few unimportant changes,

According to the Iﬁﬁfe’ditions, Euclid's basic assumptions
consist of five *‘common notions’’ concerning magnitudes, and
the following ﬁve. Postulates:

I 4 stra*.-,ght\lme may be drawn from any one point lo any
sther poi /

II. A jinf\’&be" siraight line may be produced fo any length in a
straight Lne. '

II,L A circle may be described with any centre at any disiance
from that centre.
IV. All right angles are equal.

V. If a straight line meet fwo other straight linés, so as to make
the two interior angles on one side of il together less than two right
angles, the other siraight lines will meet if produced on that side
on which the angles are less than two right angles.

1
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According to the modern view, these postulates are incom-
plete and somewhat misleading. (For the rigorous axioms that
replace them, see §§ 8.3, 0.1, 9.5.) Still, they give some idea
of the kind of assumptions that have to be made, and are“cof
interest historically. ' R
Postulate I is generally regarded as implying that\'zihff two
points determine a unique line, Postulate II that aJine is of
infinite length. Euclid showed the great strengthof his genius
by introducing-Postulate V, which is not self’évident like the
others. (Moreover; his reluctance to inttéduce it provides a
- case for calling him theﬁrstnon-Euclide{ngeometer!) Between
his time and our own, hundreds of people, finding it compli-
cated and artificial, have tried to/deduce it as a proposition.

" But they only succeeded in replacing it by various equivalent
assumptions, such as the follawing five:

1.11. Twe parallel Hné:.;:_dre equidisiant. {Posidonius, first
century B.C.)L
AN
L12.. Ife Iin{@t,érseﬂts one of two parallels, it ulso inlersecis
the other N '(Proclus, 410-485 A.p.)

1.13. Giniz:d iriangle, we can construct a similar triangle of any
s53z¢ whatever. (Wallis, 1616-1703.)

1,1\{.:’"2738 sum of the angles of a triangle is equal to two right
“ A\ ongles. (Legendre, 1752-1833.)

N \ 1.15, Three non-collinear jﬁoints always lie on a circle. (Bolyai
"9 Farkas,* 1775-1856.)

_ Acodrding to Euclid’s definition, two lines are paraliel if
- they are coplanar without intersecting. (Following GAuss and
¢ Lobatschewsky, we shall modify this definitjon later.) The

*In Hungarian, the surname is put first. The 1" in “Bolyai" is mute.



§1.1 PLAYFAIR'S AXIOM 3

existence of such pairs of lines follows from Euclid I, 27, which
depends on Poatulate I1 but not on Postulate V.

FiGg. 1.1z

It is an interesting exercise to estabhsb the equivalence of
all the above statements, assuming Postulates I-1V (and the

consequent propositions Euclid I; 1:28).* For mstance, to -

deduce 1.12 from 1.15 we may proceed as follows,

Let p and p’ be two mtersectmg lines, let O be any point on
the perpendicular from (p, p’Yto another line q, and let P, P/, Q
be the reflected i 1rnages 0{0 inp, ¢, q. (See Fig. 1.1A.) By
Postulate I'V, p and,p/ @re not both perpendicular to OQ; thus
P and P’ cannot bo\th lie on OQ. Suppose P does not lie on
04Q; then, by 1 16, P meets g at the centre of the circle POQ.
Hence p and pA¢annot both be parallel to q. Thus 1.15 implies
that two intgrsecting lines cannot both be parallel to the same

line, is’statement {commonly known as Playfair's Axiom,
thougl'r'\Playfa:r copied it from Ludlam) is clearly equivalent
to, 1112,

\“The necessity of making some such assumption has been
\ﬁnally established only during the last hundred years. Nowa-
days, anyone who tries to prove Postulate V is classed with
circle-squarers and angle-trisectors. For we know that there
is a perfectly logical geometry in which the lines in question

*See Bonola [2], pp. 61, 119; Sommerville [1], pp. 288-203.
{All such references are to the bibliography on pp. 267-272.)

2
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may fail to meet, even when the interior angles are quite small.
This remark is so easy to make today that we are apt to forget
what a heresy it seemed to a generation brought up in the

“belief that Euclid’s was the only true geometry. We now

. learn of many different geometries, but for historical reasonb
we reserve the namie non-Euclidean for two special kinds:
hyperbolic geometry, in which all the “self-evident’’pestu-
lates I-IV are satisfied though Postulate V is demed and
elliptic geometry, in which the traditional mterpretatlon of
Postulate 1T is modified so as to allow the total. bength of a line
to be finite.

As a first glimpse of hyperbolic geometry, here are the
statements that replace 1.11-1.15: Two‘lines cannot be equi-
distant; a line may intersect one of twe’parallels without inter-
secting the other; similar trzangles are necessarily congruent;
the sum of the angles of a triagle is less than two right angles;
three points may be neither¢ollinear nor coneyclic. In elliptic
geometry, on the other haid, any two coplanar lines intersect,
so there are no parallélsin Euclid’s sense, and no equidistant
lines in a plane. (Weshall see, however, that equidistant lines
are possible in gpake.)

Each of these geometries, Euclidean and non-Euclidean, is
consisient,dh, the sense that the assumptions imply no contra-
dlction,, But which geometry is valid in physical space? It is
1mp6xtaﬁt to realize that this question is meaningless until we
have ‘assigned physical equivalents for the geometrical con-

:~erts Even the notion of a point, “position without magni-
can only be realized by a process of approximation.
Then, what is the physical counterpart for a straight line?
The two most obvious answers are: a taut string, and a ray of
light. Accerding to recent developments in physics, these are
not precisely the same! But the discrepancy’is due to the
presence of matter, and so a theoretical geometry of empty
space remains significant. Consider, then, two rays of light,




§1.2 TBE IsoscELEs BIRECTANGLE S

perpendicular to one plane, Certainly they remain equidistant

according to all terrestrial experiments; but it is quite con-
ceivable that they might ultimately diverge (as in hyperbolic
geometry) or converge (as in elliptic).

1.2. Saccheri and Lambert., The most elaborate attempt
to prove the “parallel postulate” was that of the Jesuit)
Baccheri (1667-1733), who based his work on an isoscgl&s\bi—
reciangle, 1.e. a quadrangle ABED with AD=BE gn‘d"«. right
aitgles at D and E. It is obvious that the angles.at>A and B
are equal. He considered the three hypotheses ”t’l;l\at they are
cbtuse, right, or acute, and showed that the assumption of any
one of these hypotheses for a single isoscel;s’.ﬁrectangle implies
the same for every isosceles birectangle~\\It was his intention
to establish the hypothesis of the righty&ngle by showing that
either of the other hypotheses leads to a contradiction. He
found that the hypothesis of the,obtuse angle implies Postu-
late V, which in turn implies the hypothesis of the right angle.
From the hypothesis of the acute angle he made many inter-
esting deductions, alwayshoping for an eventual contradiction.
We know now thathis’hope could never have been realized
{(without his making a mistake); but in the attempt he was
unwittingly disgovering many of the theorems of what was
fater to be }cQ'an as hyperbolic geometry.

&

O

&

*

B q
Fi1a. 1.2a

In particular, he considered a point A'and a line g (not .

through A), and showed that, on the hypothesis of the acute

Q!
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angle, the flat pencil of lines through A contains two special
lines p and p’, which divide the pencil into two parts, the first
part consisting of the lines which intersect q, and the second
of those which have a common perpendicular with q. (See
Fig. 1.24.) The line p (and likewise p’) is asymplotic to ¢in
the sense that the distance to q from a point proceeding(@jong
p continually diminishes, and eventually becomes smatler than
any segment, taken as small as we please. The'cgp\éequence
which Saccheri imagined to be “‘contrary to the\nature of a
straight line” is that the lines p and q have g sommon perpen-

- dicular ai their common point ol infinity. (Weshall see in §10.1

that this statement can in fact be justified)

Fifty years later, Lambert (1728-1777) followed the same
general program, using a frirectanglehich can be regarded as
one half of Saccheri’s isosceles bitectangle (divided along the
join of the midpoints of AB and\DE). He likewise rejected the
hypothesis of the obtuse a;lgfé (for the fourth angle of his tri-
rectangle), but he carriedthe consequences of the hypothesis
of the acute angle stillMarther.* He defined the defect of a
polygon as the difference between its angle-sum and that of a
polygon of theQ e number of sides in the Euclidean plaie;
and, observing that the defect is additive for juxtaposed poly-
gons, he cotieluded that, on the hypothesis of the acute angle,
the dejtefcg\of ¢ polygon is proportional to its area. Comparing
thi' with the well-known result concernting the angular excess
of @ 'spherical polygon, he suggested that the hypothesis of the

;.\étchte angle would hold in the case of a sphere of imaginary
\radius,

In Euclidean geometry, on account of 1,13, lengths are
measured in terms of an entirely arbitrary unit which has no
structural significance, In measuring angles, on the other hand,
“we can make use of a natural unit, such as a right angle or a
radian, which has particular geometrical properties. In this

*Stickel and Engel {1}, pp. 152-207. .
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sense we may say that Euclidean lengths are relative, whereas
angles are absolute. Lambert made the notable discovery that,
when Postulate V is denied, angles are still absolute, but
lengths are absolute too. In fact, for every segment there is a
corresponding angle, e.g. the angle of an equilateral triangle - {\
tased on the given segment. A

1.3. Gauss, Wachter, Schweikart, Taurinus, Gau;s
(1777-1855) was the first to take the modern point of View,
that a geometry denying Postulate V should be developed for
its intrinsic interest, without expecting any confradiction to
arise. But, fearing ridicule, he kept these rew.Qlutionary ideas
to himself until others had published them independently.
From 1792 to 1813, he too tried to prove thé*parallel postulate;
but after 1813 his letters show that he{had overcome the cus-
tomary prejudice, and developed an ¢ ‘anti-Euclidean" or “‘non-
Euclidean’' geometry, which is.in\act the geometry of Sac-
cheri’s hypothesis of the acutefgingle. He discussed this with
his pupil Wachter (1792-1817), who remarked in 1816 that the
limiting form assumed by-@ephere as its radius becomes infinite
is a surface on whichSall the propositions of Euclid (including
Postulate V) are valid; or, as we should say nowadays, tha
the intrinsic geowselyy of a horvosphere is Euclidean. :

Independgntly of Gauss, Schweikart (1780-1858) developed
what he called”*‘astral” geometry, in which the angle-sum of a
triangle \késs than two right angles and {consequently} di-
minighies as the area increases. In a Memorandum dated 1818
hesgbﬁe’rved that “the altitude of an isosceles right-angled
triahgle continually grows, as the sides increase, but it can
never become greater than a certain length, which I call the
Constant.” Gauss complimented Schweikart on his results,
and remarked that, if the Constant is called & log{1++/2), the -
area of a triangle has the upper bound =k2

Thus encouraged, Schweikart persuaded his nephew
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Taurinus (1794-1874) to devote himself to the subject; and it
was In a letter written to this young man in 1824 that Gauss
gave the fullest account of his own discoveries. Taurinus
developed a “logarithmic-spherical” geometry by writing ik
for the radius k in the formulae of spherical trigonometry‘\
(Compare Lambert's suggestion about an imaginary sphe{e)
Thus, for a triangle with angles 4, B, C and sides a, l{ ¢i‘he
found :

1.31. cos C = sin A sin B cosh (¢/k)— cos A cok B,

whence cos € > —cos (4+B), and ’\

1.32. A+B+C<. )

For the circumference and area of a\c:lrcle of radius r, he
obtained PN

27k sinh -4;: and ‘2'%1;’k2“(cosh—;: —1),
and for the sufface and w:)l'ume of a sphere,

4rk? sinh? mhnd 2rk? (sinh-r-co's LA i) .
é.‘ k k k
(Notice that,'if‘k tends to o, these tend to the usual expres-
sions in Euclidean geometry.)

_ .4:§,‘Lobatschewsky. Formulae equivalent to these were
deri rigorously (and quite independently) by the Russian
mathematlaan Lobatschewsky (1793-1856), who shares with

{ :‘Gauss and the younger Bolyai the honour of having made the
' first really systematic study of what we now call hyperbollc
‘geometry. His earliest paper was read in 1826, published in

1830,and a number of others followed.* Like Gauss, he defined
parallelism in such a way that there are just two lines through

a given point A parallel to a given line g (Fig. 1.24), these being
*Lobatschewsky [1].
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asymptotic to q, as Saccheri had already shown. ‘Drawing
AB perpendicular to g, he defined the angle of paralielism
TI{AB) as the (acute) angle between AB and either of the par-
allels. In terms of a convenient form of the absolute unit of
length (Taurinus’s & =1), he found that the angle of parallelism
for the distance AB=c¢ is :

N

, — . A\
II{c) =2 arc tan ¢ °= arc cot(sinh ¢)= arc cos(tanh ¢} N

which decreases from 1 to 0 as ¢ increases from 0 to @2 SThe
same result, in the form sin II{c} cosh ¢=1, could ii:{av:é been
obtained by Taurinus also, if he had put 4 ;.If(é), B=1ir,
C=0,k=1in 1.31. 4

Lobatschewsky derived his trigonometricalformulae from a
study of the horocycle (circle of infinite ;jé'\(iius) and horosphere
(sphere of infinite radius), in the courée,of which he rediscov-
ered Wachter’s theorem that the ggdmétry of horocycles on a
horosphere is identical with the geometry of straight lines in
the Euclidean plane. Havingialso rediscovered Lambert’s
formula 7— 4 — B—C for the'area of a triangle ABC, he pro-
ceeded to calculate them(b!ume of a tetrahedron,* expressing
the result in terms Qf'\hiﬁ famous transcendental function

OL(x)= j log sec y dy.
" o

Observi ':t}\lat the trigonometrical formulae of Euclidean
geometryyafe valid in the infinitesimal neighbourhood of a
point inthie new geometry, Lobatschewsky considered the pos-
sibility; that his geometry might replace Euclid’s in the explor-
ation of astronomical space. The crucial experiment would

Sconsist in finding a positive lower bound for the parallax of
stars. For, if ¢ is a diameter of the Earth’s orbit, measured
in terms of the (unknown) absolute unit, the parallax of any
stat should exceed $7—II{c). But this remains an open ques-
tion, since such a lower bound, if it exists, is smaller than the

*C1L. Schlafli {1), p. 97; Richmond {i]; Coxeter [1].
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allowance for experimental error. The failure of the experi-
ment merely tells us that, if space is in fact hyperbolic, the
absolute unit must be many millions of times as long as the
diameter of the Earth’s orbit.

In this connection we must bear in mind that, although a,
geometry may seem more interesting if we can compare it
with the real world, its validity as a logical structure is‘not
affected, but depends only on its internal consistency. Ifi‘order
to show that his “imaginary” geometry or “‘pangeomietry” is
as consistent as Euclidean geometry, Lobatschewsky pointed
out that it is all based on his formulae for a/triangle, which
lead to the familiar formulae for a spherical tiidngle when the
sides a, b, ¢ are replaced by 4@, 44, ic. Anyjinconsistency in the
new geometry could be “‘translated’’ iffto"an inconsistency in
spherical geometry (which is part*of“Euclidean geometry).
Thus, after two thousand years of doubt, the independence of
Euclid’s Postulate V was finally ¢stablished.

L.5. Bolyai. Many.of the same results were discovered

. about the same time by ‘Bolyai J4anos (1802-1860), who wrote

to his father, Bol{ Farkas, in 1823: ‘I have resolved to
publish a workyon'the theory of parallels, as soon as I shall
have put the material in order. . ., The goal is not yet reached,
but I have ¢hade such wonderful discoveries that I have been
almost gvetwhelmed by them. . .. I have created o new universe
Jrom notking.’

. ’BSlyai Farkas expressed the wish to insert his son's dis-

(Loveries in his own book, as an Appendix.* In making this
voffer, he remarked, more appropriately than he realized, that

“many things have an epoch, in which they are found at the
same time in several places, just as the violets appear on every
side in spring.”

The younger Bolyai's speciality was the “absolute science
*Bolyai [1, {2}, '
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of space” (or absolute geomeiry), consisting of those proposi-
tions which are independent of Postulate V, so that they hold
in both Euclidean and hyperbolic geométry. For instance, he
expressed the “sine rule” for a triangle ABC in the form

Og :Ob:0c¢ ::sin A :sin B :sin £,

where Oz denotes the circumference of a circle of radius a. ¢ Ha
observed that such formulae hold also in spherical georhetry.

1.6. Riemann. The full recognition that spherieal geome-
try is itself a kind of non-Euclidean geometry; avithout paral-
lels, is due to Riemnann (1826-1866). He realizéd'that Saccheri’s
hypothesis of the obtuse angle becomes 'vatid as soon as Pos-
sulates 1, IT and V are modified to readi\’

1. Any two poinis determine at leasi(one line.
I1. A line is unbounded. N
V. Any two lines in ¢ plane willyieet.

For a line to be unbounded and yet of finite length, it
merely has to be re-entrant, like a circle. The great circles on
a sphere provide a modél¥or the finite lines on a finite plane,
and, when so inter ré{‘e&, satisfy the modified postulates. But
ifalineanda plang}m each be finite and yet unbounded, why
not also an #-dimensional manifold, and in particular the three-
dimensional §pace of the real world? In Riemann’s words of
1854; ",’Iihé unboundedness of space possesses a greater em-
pirical\.c\\e;rtéinty than any external experience. But its infinite
extent by no means follows from this; on the other hand, if we

_agsyme independence of bodies from position, and therefore
<. ascribe to space constant curvature, it must necessarily be finite
provided this curvature has ever so small a positive value.”'*

According to the General Theory of Relativity, astro-
nomical space has positive curvature locally (wherever there
is matter), but we cannot tell whether the curvature of

*Riemann (1], p. 36.
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“empty” space is exactly zero or has a very small positive or
negative value. In other words, we still cannot decide whether
the real world is approximately Euclidean or approximately
non-Euclidean, : .

Riemann employed the “infinitesimal approach’ to geom#é-®
try, wherein the differential of distance is expressed ag\the
square root of a quadratic form in the differentials of.fhe’¢o-
ordinates. In the special case of constant curvature, His for-
mula is _ _ A%

161, ds= Y26 | ~\

‘ \ 1+1 Kzt

A year or two before Riemann ge‘er&"his epoch-making

- Hobilitationsschrift, quoted above, Selilafli (1814-1895) devel-

oped the analytical geometry of“\#“dimensional Euclidean
space,* and considered in partiellar the hyper-sphere Tx? =42,
which provides a model for\Riemann’s (-~ 1)-dimensionat
spherical space. N

In the differential georﬁ'etry of a surface in ordinary space,
the product of the miaximum and minimum “normal curva-
tures” is usuallyidenoted by K. (Thus K=4"*for a sphere
of radius k) »Gauss made the notable discovery that this
specific curvginre can be expressed in terms of quantities
measured o}m\the surface itself, without using properties of the
underlyipﬁ Euclidean space (e.g. normals). Thus it could still
be Qﬁnéd if the underlying space did not exist. Riemann’s
“‘constant curvature” is the #-dimensional analogue of this K.

/ uéfdthlxgh the geometry of astronomical space, according to his

. f,i

) “hypothesis, may be identical with that of a hyper-sphere in

four-dimensional Euclidean space, it does not follow that there
is in any physical sense a Euclidean four-space in which the
spherical three-space is imbedded.t Thus spherical space is like
*Schiafli [1]. .
tSommerville [2], p. 199 (§7). -
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f

the substance of a balloon with an extra dimension; but the
simile breaks down if we seek a meaning for the air inside or
outside the balloon.

1.7. Klein., Riemann developed the differential geometry
of spherical space. On the other hand, Cayley (1821-1885)
considered space “in the large,” defining distance in tgra?s of
homageneous coordinates. But it was Klein (1849-1925) who
first saw clearly how to rid spherical geometry ol its one
blemish: the fact that two coplanar lines (being two great
circles of a sphere) have not just one but fwesommon poinis.
Since every point determines a unique antipodal point, and
every figure is thus duplicated at the.antipodes, he realized
that nothing would be lost, but malely’ gained, by abstractly
identifying each pair of antipodal\points, i.e. by changing the
meaning of the word “point” se'as to call such a pair one point.

The word “line” will then be used for a great circlé with
every pair of diametrically opposite points identified (or a
great semicircle with.itd two ends identified). So also, the
word “plane” wil b\&'ﬁsed for a great sphere with every pair
of antipodal pdints identified, and analogous definitions can
be made in any number of dimensions. With this meaning for
the words, @#y two points determine a unique line; for, anti-
podal peirts are no longer two but one. Thus the traditional
form Qf'\f"ostulate i is restored. As for Postulate 11, a line is
still\inbounded, though finite, its length being half that of the

. great circle. Right angles retain their ordinary meaning, but
<_)a’cirele appears as a pair of antipodal circles.

It was to this modification of spherical geometry that Klein
gave the name elliptic geometry. It is in many ways simpler
than either spherical or Euclidean geometry, and can be de-
veloped quite independently. The geometry of pairs of anti-
podal points is merely a model for it, a convenient representa-
tion in terms of more familiar concepts. Another model is
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obtained by considering the diameters which join such pairs
of points. In this manner the points and lines in elliptic space
of n dimensions are represented by the lines and planes
through a fixed point O in Euclidean space of »+1 dimensions. _
+ In particular, elliptic geometry of two dimensions is represented
as the geometry of a bundle in ordinary space. To interpretithe
elliptic concepts in terms of Euclidean concepts, we translate
thern according to the following “dictionary”: S

W,
™

The elliptic plane Euclidean space, in the netghbourhood
of a fixed point Oy ~\\

Point . Line through O

Line Plane through O )

Segment Angle O

Angle " Dihedral atig\t

Perpendicular lines ’ Perpendlcular planes

Triangle . Tnhndron

Circle R:ght circular cone

Rotation-about a point ’Rotatlon about a line through O

Reflection in a line s Reflection in a plane thmugh (4]
etc. L etc.

£ )
A third model § "’elliptic plane geometry) can be derived
from this second/model by considering the section of the bundle
~ by an arbitrafy; plane, not passing through O. This has the
advantagegf.fepresenting points by points, and lines by lines.*
But distances and angles are inevitably distorted, since the
distafice between two points has to be re-defined as the angle
subtended at O. Moreover, certain points of the elliptic
’..\gg\ometry are left out, since certain lines of the bundle are
parallel to the chosen plane. In order to accommodate these
extra points, it is natural to augment the Euclidean plane by
. postulating peints at infinity, one for every direction, in the
manner ‘advocated by Kepler (1571-1630) and Desargues
(1593-1662). When this is done, we have the projeciive plane,

*Klein [1], p. 604; [3], p. 148.
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in which every two lines intersect {either at'an ordinary poiht
or at infinity). Thus, if metrical ideas are left out of consider-
ation, elliptic geometry is the same as real projective geometry.

Conversely, real projective geometry (which we shall de- -

velop in Chapters 1, II1, 1V) contains certain correspondences
which enable us to define the elliptic metric in the whole spate
(see Chapters v, v1, viI), and to define either the Euclidean or
the hyperbolic metric in a suitable part of space (Chapter'1x).

The study of elliptic geometry is almost forced Alpon us as
soon as we have added points and lines at infinityto Euclidean
space. For, such points and lines form a plang~—the plane at
infinity——whose intrinsic geometry is elliptic. (See §9.5.)

To sum’ up, the metrical geometries &ith which we are
concerned are Euclidean, hyperheolic, spﬁencal, and elliptic. Our
preoccupation with these four, as agaimst all other continuous
geometries, is justified by the jaé’t'“that only in these cases is
space completely isotropic, inithe sense that all the lines
through each point are alike. It is an interesting result in
differential geometry that,if space is continuous and isotropic,
it is also homogeneous or, as Riemann would say, of constant
curvature. W
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CHAPTER II

REAL PROJECTIVE GEOMETRY: FOUNDATIONS

2.1. Definitions and axioms. In any geometry, logicafly
developed, each definition of an entity or relation inz{rblves
other entities and relations; therefore certain particularehtities
and relations must remain undefined. Similarly, the proof of
each proposition uses other propositions; théréfore certain
particular propositions must remain unproved these are the
axioms. We take for granted the machmel% of logical deduc-
tion, and the primitive concept of 3 class’(dr ‘set of all’).

Unless the contrary is stated, the ‘word correspondence will
be used in the sense of one-to-one correspondence. Thus a set
of entities is said to corresponde another set if every entity in
each set is associated with a‘p'il'ic]ue entity in the otherset. In
geometry the entities aresusually points or lines, and the set
of entitiesis called a ﬁgs‘m Thus we speak of a correspondence
between two figureg{ ‘It is often convenient to regard the cor-
respondence as anoperation which changes the first figure into
the second. (F\amlllar instances are rotation, reflection, inver-.
sion, and redigrocation.} The general technique for discussing
correspondences belongs properly to the theory of groups; but
the follpwing outline will suffice for our purposes.

We shall find it convenient to denote a correspondence by

_.atapital Greek letter, such as ©, writing FO=F’ to mean that’

B relates the figure F to F’ (or that the figure corresponding to
F is F'). If a second correspondence & relates the figure F’ to
F;, we write F'é = =F}, or Fod= =F}, and say that the product
0 relates F to Fi. The trivial correspondence that relates
every entity to itself is called the identity, and is denoted by 1
(since its product with 6 is © itself). If 88 =1, we call & the

14
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tnverse of @, writing =61 (Thus the relation FO=F" is
equivalent to F=F'67L) Some authors write O(F) instead of
F9, so as to exhibit it as a funétion of F. (Note that, in one of
the accepted notations, we write x =sin~'x’ when sin x=x".)

If a correspondence 8 relates F to F, while another corres-, \
pondence & relates the pair of figures (F, F') to (Fy, ') we say ./

that ® transforms O into the correspondence between Fl and

F;. Since R
F1=F’@=F%=F1@_19@, ‘& 7

this transformed correspondence is ®716%. It may.h:ippen that
@ itself relates F1 to F, so that ® transforms, 8linto itself. We
then say that © is fnverient under transformation by $. Since
the relation 0% =0 may be written 8®=2®0, an equivalent
statement is that O and & are permumble (As a familiar
example of correspondences which\ are net permutable, con-
sider the reﬂectlons in two planes not perpendicular to one
another.)

According to Klein, the‘character of any geometry.is deter-
mined by the type of ogrespondence under which its relations
are invariant; e.g.Euclidean geometry is invariant under
Ysimilarity transfg’r‘rﬁations "* The title of this book refers
strictly to j!.ISf\tWO geometries, elliptic and hyperbolic; but
certain otlg;:are so closely interwoven with these as to compel

our attent The concept of similerity, which plays such a
vital rol& in Euclidean geometry, has no analogue in either of
thesnon-Euchdean geometries. On the otherhand, the concept
of\parallelism (for lines in one plane) belongs to both Euclidean
and hyperbolic geometry, but is lacking in elliptic. Bolyai
J4nos (§1.5) gave the name absolute geometry to the large body
of propositions common to Euclidean and hyperbolic geometry.

Some of these propositions will be used in Chapter I1x, before

*Veblen and Young i2), I, pp. 64-68; I1, pp. 78, 119,
. _

N\
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we split absolute geometry into its two parts by affirming or
denying the uniqueness of parallelism (or Postulate V).

The contrast between absolute and elliptic geometry is
clearly seen in the theory of order.* In either geometry we can 4
describe a “four point”’ order, saying that four collinear points
fall into two pairs which separate each other. In absplute
geometry this can be derived from the stronger ‘“‘three point”
order, in which we say that one of three collinear peirits lies
befween the other two. But in elliptic geometry Al lines are
closed, and so the notion of order does not specialize one of
three points: order is no longer “serial"” but Leyclic.”

“Throughout the ages, from the andient Egyptians and
Euclid to Poncelet and Steiner, geqmetsy has been based on
the concept of measurement, whicl(is defined in terms of the

. relation of congruence. Tt was, var Staudt (1798-1867) who
first saw the possibility of constructing a logical geometry
without this concept. Since has tirme there has been an increas-
ing tendency to focus aftention on the much simpler relation
of incidence,t which is expressed by such phrases as *“The point
A lies on the line pler "‘The line p passes through the point A.”

Euclidean geometry with congruence left out is called affine
geometry. YA§/so many- figures in Euclidean geometry are
defined imvteeins of congruence (e.g. equilateral triangle, circle,
conic\sf):;ffion), it might seem that in affine geometry there

- woufdhbe little left to talk about. Itis true that the content

- oflafiine geometry is less rich than that of Euclidean, butitis
o\ still possible to define conics, for example, and to distinguish

) the three types: ellipse, parabola, hyperbola. Postulate V,
in. its non-metrical form 1.12, allows us to define an attenuated
kind of congruence, by which we can compare certain segments
(namely those which are parallel to one another) and measure
area.} But the notion of “perpendicularity” is entirely lack-

*Vaitati [1]. See also Veblen and Young [2], 1, p. 44, and Russell [1L
IV. {Pieri [1]; Baker [1],1, p. 4. jHeffter and Koehler {1}, I, P 219.

ES
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ing. By suitably defining perpendicularity, we can restore the
whole of Euclidean geometry. By modifying the definition,
we can derive instead Minkowskion geometry,* the four-
dimensional case of which is used in the Special Theory of
Relativity.

Similarly, elliptic geometry with congruence left out is real
projective geometry. This was developed {qua Eucllclean
geometry augmented by points at infinity) long before e}hptw
geometry itself, and is still widely studied for its own. ifterest.
Tt excels affine geometry in the symmetry of its topomtlons
of incidence, which occur in pairs in accordance with the “prin-
ciple of duality.” Moreover, it includes a ‘the other geome-
tries that have been mentioned. Forg By suitably defining
'perpendlcularlty we can restore the\Ghétrical properties of
elliptic geometry, and by modey.mg the definition we can
derive instead hyperbolic geometry” Again, by specializing a
plane {(in thé ti*ren—d1menswnal “case) or a line (in the two-
dimensional), we can derive" afﬁne geometry, and thence either
Euctidean or Mmkows"lg\an. _

In the following{genealogy,” each geometry (save the
first) is derived from\its parent by some kind of specialization:

PN\Y; Projective
'\’ » | i
EQ{PUC Affine Hyperbolic
QA i |
\J Euclidean Minkowskian

3

N In view of the above remarks, we shall set aside all metrical
considerations till Chapter v, and survey the foundations of
real projective geometry, using the axioms of Pieri, Vailati,
and Dedekind. In this case there are two undeﬁned entities,

*Minkowski [1]; Robb [1].
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point and Iine; two undefined relations, ¢ncidence and separe-
tion.
AXIOMS OF INCIDENCE

2.111. There are at least two poinis.

2.112. Awny two poinis are incident with just one line.

The line thus determined by two points A and B is saidhto
join the points; and is denoted by AB. A

2.113. The line AB is incident with ai least one point beésides
A and B. ~ON

Points incident with a line are said to lie O‘Pith,é line, or to
be collinear. The class of points on a line is\cdlled a range.

2.114, There is at least one point ng incident with the

_ line AB. 0

Lines incident with a point are sah to pass through the

point, or to be concurrent. Two sucéh/lines are said to meet or
intersect. By joining the points’f a range to a point C, not
belonging to this range, we ofitain a flat pencil of lines, with
centre C. A plane is the class of points on the lines of a flat
pencil, together with the‘class of lines joining pairs of these
points. \
2.115. IfA, B}\\S'ﬁm three non-collinear points,and D is a
point on BC dislinct from B and C, while E is a point on CA
distinct fronp€.and A, then there is a point F on AB such thai
D, E, F arecollinear. (See Fig. 8.8a on page 173.)

Its%ﬂtiws that 2 plane contains all the points on each of its
lines; anid can be defined equally well by any pencil contained
in. it In terms of three non-collinear points, or a non-incident

'\fpﬁint and line, we denote a plane by ABC or Ap. Points or

lines in one plane are said to be coplanar.
2.116. There is at least one point not in the plane ABC,
2.117. Amny two plenes tniersect in a line.

So far, we may appear to have been underlining the obvious. Every

- student of elementary geometry is familiar with the terms just used. But

the real importance of the foregoing remarks lies less in what we have said
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than in what we have not said. We have not mentioned the possibility of
the distance AB being equal to the distance CD; we shall never make such
a remark as long as we are dealing with projective geometry only.

From the above axioms it is possible to deduce all the prog \
positions of incidence for points, lines, and planes. If lines,p
and q intersect, we denote their common peint by (p, @) and
their plane by pq. Two lines which do not intersect ace said
to be skew. Planes incident with a line are said to paSs through
the line, or to be coaxial. The class of planes thsgmgh alinep
is called an axial pencil, with axis p. Thesclass of lines and
planes through a point O is called a bundle\(pr sheaf, or star),
with ceatre Q, \.

By considering ‘‘degrees of freedpm we are led to speak
of a point as having #o dzmenswn aMine one dimension, and a
plane two dimensions. The Imesr of a flat pencil, and likewise
the planes of an axial pencil, warrespond (by incidence) to the
points of a range, which is'the section of the pencil by a line.
For this reason, ranges 4nd pencils together are described as
one-dimensional primiityé forms. Similarly, planes and bundles
are fwo- d@menswna\l\}brms the points and lines of a plane being
sections of the fides and planes of a bundle; and the whole
space is thregdimensional.

One o{ihle most important correspondences in projective
geomety is perspectivity. This is the correspondence estab-
llshed hetween two coplanar lines, or two planes, by regarding
_.tham as different sections of the same flat pencil or bundle,

\ pespectively. In the case of lines, we say that the fiat pencil
projects the one range into the other, and the two ranges are
said to be in perspective. (See Fig. 2.1, where O is the centre
of the pencil.) Corresponding points are indicated by for-
mulae such as

ABC.:.?\A’B’C’..., or ABC...= ABC'.

>'lQ
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Fic. 2.1a Fia:2{s

Our second undefined relation refers to {we'pairs of points
on a line. Following Vailati, we use thessymbol AB || CD to
mean that A and B separate C and DY (The significance of
this relation is most clearly seen by’répresenting the line as a
circle. See Fig. 2.18.) N

AXIOMS OE'SEPARATION

2.121. IfA B, Care three collinear poinis, there is at leas!
“one point D such that A@ J] CD.
2.122. If AB ||ED, then A, B, C, D are collinear and dis-
tinct. N \\
2.123. IfAB)|| CD, then AB || DC.
2.124. JfA, B, C, D are four collinear points, then either
AB || CD/r'AC || BD or AD || BC.
2.126) If AB || CD and AD || BX, then AB || CX.
2(126. IfAB|/CDand ABCD—A'B'C'D/, then A'B'[|C'D.

PR “\ From the last of these axioms we can deduce* that the relation
\ JAB || CD implies CD |[ AB. Putting G for X ia 2.125, and using 2.122,
we see that the relation AB || CD excludes AD || BC. The existence-axiom
2.121 has been inserted as the ost natural way to secure an infinity of

*Robinson [1}, p. 119 (second footnote). Following Veblen, Robinson
uses the symbaol A for the combination of several perspectivities. Following
von Staudt, who inveated that symbol, I prefer to define it differently,

though later the two definitions will be seen to be equivalent {in real
geometry). )
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points. Accordingly, the above axioms differ slightly from those given
by Vailati {and quoted by Veblen and Russell).

If A, B, C are three collinear points, we define the segment
AB/C as the class of peints X for which AB |[ CX. Thus the
segment AB/C does not contain C. The segment with its end
points A and B is called an inierval, and is denoted by AB/E.
If X and Y belong to AB/C, the interval XY/C is said to.be’
interior to AB/C, and a point D lies beiween X and Y in AB/C
if it belongs to XY/C, i.e. if XY || CD. (Either X ér"Y may
coincide with either A or B. In other cases we(have either
AX!|BY or AY ||BX.) Thus “three point! arder becomes
valid when we restrict consideration to arkinterval, or to a
segment. D
AXIOM OF CONTINUEFY

2.13. For every partition of all ..tke ‘points of o segment into
fiwo non-vacuous seis, such that nopdint of either lies between two
poinis of the other, ihere is a jmint of one sei which lies between
every other point of that set andievery point of the other set.

This final axiom wil@e used in §2.7.
71 .

2.2. Modelsa Rhen we say that a system of axioms is
consistent, we .\ri{ean that no two theorems, logically deduced
from them, carbbe contradictory (like the statements “All right
angles are\equal” and “‘Some lines are self-perpendicular”).
Clearlys Here is no direct test for consistency, since we cannot

' follp\ic up the infinite number of possible chains of deduction
16 see whether any two of them lead to a contradiction. For

an indirect test we use & model, which is a set of objects satis-
fying the same axioms as the undefined entities of the original
system. Any contradiction implied by the original system
would be represented by a contradiction in the model, and this
cannot occur so long as the objects unquestionably exist. These
objects may be (defined or undefined) entities in another ab-
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stract system whose consistency is taken for granted, or they
may be physical objects whose reality is accepted for reasons
outside the domain of mathematics. In the former case the
assumption of consistency can only be justified by means of a
model of the model; so it may well be argued that every quess
tion of consistency is ultimately based on properties of the
physical world as interpreted by our senses. (For thosewvho
dislike this materialistic conclusion, a possible loopho]c is
offered by the recent attempts to prove the corrmstency of
arithmetic in a direct fashion.*) N

We give here three models for real prOJectlve geometry.
The first is in terms of affine geometry, wh whese consistency is
usually established by means of Carﬁe}mn coordinates (the
“model of the model™). The secohd refers directly to the
number system. The third is in térms of absolute geometry,
which, being based on the “sgt{aé{'ident" postulates I—IV, is
amenable to direct_compariéén with physical space.

To construct the firs€ ‘model, we define axial pencils and
bundles in affine (or.,ifbreferred, Eudlidean) space, in such a
way as to include pégeils and bundles of parallels, and then set
up a-“dictionary, »as follows:

Real proje(,'t\i\ie\space Affine space
Point . J{ Bundle
Line \\.J Axial pencil
A ps'iht lies on a line The planes of 2 bundle include those
N of a pencil
~ :fwo poiais determine a line The common planes of two bundles
\ )| _ form a pencil

_ Setting up this model is effectivelyequivalent to the classi-
cal derivation of projective space from affine (or Euclidean)
space by adding the “ideal” points and lines of a postulated

*Hilbert and Bernays {1].
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“plane at infinity.” For, such points arise as centres of -bun-
dles of parallel lines, and such lines arise as axes of pencils of .
parallel planes. ' -

The direct appeal to arithmetic is made by using homo-
geneous coordinates. The appropriate dictionary this time is \

as follows: O\
A\
Real projective space The real number system « \
Point A The class of ordered tetrds)of real

numbers, proportional to 4 {given tetrad
(@0, a1, 22, 20) N

Linep The class of ordefed hexads of real
numbers, proportianal to a given hexad
{P“, P, P;g,,&,’ Pos, Pa:} satisfying the
equation PiRu+PuPout+Pi1aPu=0
{For convenience we define P etc., so
that Pyy= — Py, and therefore Py, =0)

Point A lies on line p €oPor 441 P 1y +2Py+e1Py, =0 for two
{anid therefore all four) values of »

Line AB \’ {aabi—abe, @obs—aabo, Gobs—aabe,
O ashy—aabs, aab1—aiby, @by —azb1}
AB 1 CD B\ The a's, and likewise the b's, ¢'s, and

d's, satisfy two independent linear homo-
geneous equations; and the respective

,\'“ £atios 8,/a,, cu/cv, bu/bys d,/d,, or some

& cyclic permutation thereof, are in strictly

AN\ ascending order of magnitude for at least
O\ \ one choice of g and »

" -
_For further details of this model, see §4.6. The verification of
all the axioms is an interesting exercise.

If we are content to consider the two-dimensional projec-
tive geometry of a single plane, a third model consists of the
lines and planes through one point in ordinary space (as in
§1.7, but without the metrical concepts):
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The real projective plane Euclidean or non-Euclidean space, in
the neighbourhood of a fixed point G

Point A 7 Line a through O

Line AB Plane ab

Range Flat pencil

Flat pencil Axial pencil O

Triangle Trihedron 4 NS ¢

Conic ' Quadric cone (‘ .

7

This has the advantage of symmetry, which tﬁé\ first model
lacks. Moreover, the geometry of a bundle can be developed
without using ““Postulate V''; in fact g{f}iﬁdle is essentially
* the same thing in absolute geometry g$jh projective. Butin
order to adapt this model to three dimensions, we would have
to consider the “hyper-bundle” of Jines and planes through a
point in four dLmensxons—whtch 1s quite satisfactory for any-

one who has become famijiar with the properties of absolute
(or Euclidean) hyper-g.psi\ée.

2.3. The principle of duality: Three non-collinear points

A, B, C are calledithe vertices of a triangle ABC; its sides are the

three lines BC;CA, AB. Analogously, four non-coplanar points

. A, B, O, D are the vertices of a tetrahedron ABCD; its edges and

Jaces, are ‘the six lines AD, BD, CD, BC, CA, AB, and the four
p]ﬂ\ﬂes BCD, CDA, DAR, ABC.

\ ~The principle of duality in the plane afirms that every
definition remains significant, and every theorem remains true,
when we interchange “point” and “line,”. and make a few
consequent alterations in wording. This means that the
geometry of lines forms a model for the geometry of points.
The following definition provides an example:
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Four coplanar points, A, B, G,
D, of which no three are collinear,
are the vertices of a complele
guadrangle® ABCD, with the six
lines AD, BD, CD, BC, CA, AB
for sides. The points of inter-
section of “‘opposite” dides, namely
(AD, BC), (BD, CA), (CD, AB),
are called diagonal points, and are
the vertices of the diagonal tri-
angle.

The principle of duality in sp
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Four coplapar lines a, b, ¢, d,
of which no three are concurrent,
ave the sides of a complete gradri-
lateral* abed, with the six points
(a, d), (b, @), (¢, d), (b, ), (c, ),
(a, b} for vertices. '
of ‘*‘opposite” vertices, namely
(a,d}(b,c),(b,d){c,a),{c. d)}(a,b),
are called diagonal lines{ and are
the sides of the diagpa%;} triangle.

ace allows the:analogous inter-

change of “point” and “plane.” Thus 2.117.48 the space-dual
of 2.112. Here is another example: /"

Five points A, B, C D E of
which no four are coplanar, are
the vertices of a complele penis-

gon ABCDE, with the ten lines °

AB, ..., DE for edges, and the™
ten planes ABC,..., CDE ar
faces. Each edge lies in{three
faces.

)

To justify tle. principle of
‘axioms imply. their own duals.

4
Rive'planes a, 3,7, 8, & of which
o NBur are concurrent, are the

wMaces of a complete pentahedron
S afiyde, with the ten lines (a, B,

..., (8, € for edges, and the fen
points (&, B, ¥)...., ¢y, 8, € for

vertices. Each edge contains three
vertices,

duality, we observe that the
For instance, 2.115 enables us

to prove the plane-dual of 2.112, namelyt

2.31\’;.\;1?231 two coplanar lines intersect.

(T.lﬁgié the result that most clearly distihgﬁishes projective
géometry from affine geometry. It rules out the possibility of

\ ﬁa’rallels.)

Having

proved a theorem, we can state the space-dual

theorem without more ado; fora proof could in fact be written
down mechanically by dualizing every step in the proof of the

*When there is no danger of confusion, we shal} omit the word ‘‘com-

plete.”’

fVeblen and Young [2], I, p. 19.

The joind \
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original theorem. The same remark applies to the plane-dual
of any theorem which can be proved without using points
outside the plane. Consider, however, Desargues’ Theorem
and its converse (which are easily proved with the help of\

2.116): .

2.32. If the vertices of 2.33. If the sideswf too
two coplanar irigngles cor- coplanar iriangles corvespond
respond in such a way thot in such a woys {fké’t the in-
the joins of corresponding fersections _of \corresponding
vertices are concurrent, then sides are-solfinear, then the
the imtersections gf corres- jotns gf eorresponding wer-
ponding sides are collinear. ticeq@m concurrent.

%

. Either of these dual theorems canr be deduced from the other,

without leaving the plane;* b’utfit is not legitimate to invoke

- the principle of duality in the-plane for this purpose, since the
initial proof is essentially ‘three-dimensional.

‘To obtain a sufficiefit 8et of axioms for projective geometry

in two dimensions, #¢ can replace 2.115—2.117 by 2.31 and

_ 2.32 (omitting tl}e\&rd coplanar). The principle of duality will

then hold withaut reservation, -
NS :

2.4. Harmonic sets. A large part of our investigation

(e.g. .C{la’pter v) will be concerned with the geometry of points

on d gingle line, where there is no scope for incidences. This

deficiency is compensated by the possibility of defining the

(" harmonic conjugate of a given point with respect to two given

points. (We think of this as a one-dimensjonal concept, even

though it requires incidences in two dimensions for its con-

struction and in three dimensions for the proof of its unique-

ness.) We shall use the abbreviation H(AB, CD) for the state-

*See, for instance, Baker 1] I, p. 181, or Robson [1], p. 211, Cf.
Veblen and Young [2], I, p. 41.
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ment that D is the harmonic conjugate of C with respect to
A and B, which means* that there is a quadrangle IJKL such
that one pair of opposite sides intersect at A, and a second pair
at B, while the third pair meet AB at C and D. This relation
is clearly symmetrical between A and B, and between Cand D. O\
Given three collinear points A, B, C, we can obtain D by
taking two points I, J, collinear with C, and constructil}g’fhé
intersections K =(AJ, BI), L=(AIL BJ), D=(AB, KL)., Ivis a
simple consequence of 2.32 and 2.33 that the positian“ef D is
independent of the choice of 1and J. But can wi be’sure that
D is distinct from €? (This is important for gertain applica-
tions.) The following proof is due to Enriq\ugs. :
Op”

7 X

S

:"\.‘0
.;&2?121 and 2.123, we can take a point § such that
AR} 8], as in Fig. 2.4A. Let IS meet AB at X, and KL at O;

~Jeb JO meet AB aty, and ATat P, Then

i J

’ I o 0
AKS] = ABXC, ARS] = ALIP == ABCY, AKS] ~ ADXY.

By 2.126, we therefore have AB || XC, AB || CY, AD || XY,

*[)e la Hire (1], Iib. i, prop. xx; Enriques f1], p. 51. )
{If X happens to coincide with D, the argument ends here; for then
the given relation AK||8J implies AB!IDC.
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Thus both X and Y are in the segment AB/C, and D lies be-
tween them. In other words, )

2.41. H(AB, CD)} implies AB || CD.

By applying the plane-dual of the above construction for

" the fourth harmonic point of three collinear points, we obtaid
a unique “fourth harmonic line” for any three lines of a ﬁag
pencil. The figure involved is almost the same as befgre} ir

 fact ID is the harmonic conjugate of IC with respect to J&and
IB. Thus a harmonic set of points is joined to an}‘f external
point by a harmonic set of lines. Dually, an}:\ﬁécticm of a
harmonic set of lines is a harmonic set of pointsy’ Hence
2.42. IfH(AB, CD)and ABCD A’B Cc'D), bhgnH(A’B’ D).

Two-dimensional geometry admlts ﬂiree alternative ana-
logues for harmonic conjugacy. One ‘ofthese, which plays an
important part in the introductionof coordinates {§4.3), is the
so-called frilinear polarity. (The other two are the harmoric
homology of §3.1, and the true\polarity of §3.2.) The trilinear

pole of a line g, with respect o a triangle ABC, is constructed
as follows,

Fic. 2.4n

Let the sides of ABC meet g in L, M, N, and Iet G,G;G, be
the triangle formed by the lines AL, BM, CN. By 2.33, the
three lines AG,, BG,, CG, are concurrent; their common point
G is the trilinear pole of g. These lines meet the sides of the
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triangle ABC in points L', M, W', which are the harmonic
conjugates of L, M, N with respect to the point-pairs BC, CA,
AB. Conversely,* we may define L', M/, N’ as the harmenic
conjugates of L, M, I, and obtain G as the point of concur-
rence of AL/, BM/, CN’. So also G, is the trilinear pole of the

line M/N’, which therefore contains L; and similarly Gy ?.51\1

G, are the trilinear poles of N'L’M and L'M'N. AN
In affine geometry, we recognize the trilinear pole of the
fine at infinity as the centroid of the triangle. 0 D

&

25. Sense. The intuitive idea of the two ‘6Bposite direc-
tions along a line, or round a circle, is so familiar that we are
apt to overlook the mniceties of its theéretical basis. Some
authors regard sense as an undefinéd" relation, and define
separation in terms of it. But the.cb:mbarison of sense requires
six points, whereas separation in¥elves only four; therefore we
prefer to deduce sense from.fsépération. As a first step we

observe that Axioms 2.12-inply the following theorem:f

2.51. If AB || CD, {:ag:wa points A and B divide the rest of
their line into just\&go segments, AB/C and AB/D.

Two such segrgnts, and likewise the corresponding intervals,
are said to béGsupplementary.

Itis ar}\in’imedjate consequence of 2.124 that three collinear
points &) B, C divide the rest of their line into three segments
BC{AS}\CA/B, AB/C; and it follows by induction that the
'ng’t;j:tion Ao, Ay, ..., A,y can be assigned to# collinear points

i such a way that they divide the rest of their line into n
‘segments A,A, /A1 (with suffixes reduced modulo n). This
division of the line into segments is maintained if we change
each symbol A, into either Ay, or A,_,, for a fixed residue s
(mod #). By meansof one of these changes, any particular three '

*Poncelet [1], 11, p. 34
$Robinson [1), p. 120



32 REAL PROJECTIVE GEOMETRY

* of the n points may be named Aq, A, A, where 0<b<c<n.
This notation facilitates the definition of one-dimensional sense.
Let ABC and DEF be two triads of distinct points on one
line. {Any of D, E, F may happen to coincide with any of\
A,B,C.) Let the distinct points of this set be named Ay, Ay, '\
A,_(n=3,4, 5, or 8)in such a way that A=A, B=4A,, C=A4,,
_with #<c. Suppose that then D=A,;, E=A, FA; “If
d<e<fore<f<dorf<d<e, wesay that the two’t,lfi‘a:ds have
the same sense, and write O
| S(DEF) =S(ABC). o)
I, on the other hand, f<e<d or d <f<eBrre<d <f, we say
that the two triads have opposite sensespand write
S(DEF) ~S(ABC),"
(The arithmetical ideas employed’l'ie,fe do not involve any fresh
assumptions, but merely avoid$éparate consideration of the
228 possible ways of distributing D, E,.F among A, B, C.)
We easily verify that the'relation of having the same sense
is reflexive, symmetrigiand transitive, and that
S(ABC)C—-T&BCA) =S(CAB) =S(ACB).
All triads whichhave the same sense as ABC are said to belong
" to the sense-g\ki,ss'S(ABC). It follows that

2.52. {ﬁére dare lwo semse-classes in the line:
§~' S(ABC) and S(ACB).
Inwgther words, the line is orientable.

. . B
Q ) The direct connection between sense and separation is
N\ given by the following theorem:

2.53. The relation AB || CD s equivalent to S(ABC) = S(ABD).

Proor. If AB || CD, the line is divided into four segments
AD/C, DB/A, BC/D, CA/B, which enable us to write (as
above, with n =4):
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A=Aa, D =A1, B =Ag, C =A3.

Herce S(ABC) = S(ADB) > S(ABD). Conversely, given
S(ABC) »S(ABD), we can reverse the argument and deduce
AB || CD.

It is now easy to justify the intuitive consequences of using),
circular diagrams such as Fig. 2.1B, where clockwiseand’
counter-clockwise senses can be indicated by an arrow pomtmg
one way or the other.

In virtue of 2.126, all the above theory of sén‘se in one
dimension can be applied to the lines ar planes of a pencil:
three lines of a flat pencil determine two sefise-classes S{abc)
and S(ach), and three planes of an axial pencil determine two
sense-classes S(afy) and S(ay8). Moreayer, the notion of sense
can be extended from one to two o;lmlensmns, where a sense-
class is defined by the vertices ©f a quadrangle. (This is
roughly equivalent to the statement that a sense of rotation is
defined by the centre of a circle® and three points on its circum-
ference.) But the conclusien is different: *ali quadrangles in
the plane have the s 1@3 gense, 5o there is only one sense-class;
the plane is unonent{b

The pro]ectlvg\plane. with its single sense-class, is not very easy to
visualize. dipary space an unorientable surface is '‘one-sided,’” and
must Cross xtsgif if unbounded. But the impossibility of distinguishing
WO senses\sl wotation is easily seen in the geometry of a bundle (which is
the “thrrtl}kmdel” of §2.2). For, any rotation about a line of the bundle
(ie. a\bou’t a paint of the projective plane) is clockwise when we look along
bhe liie in one direction, and counter-clockwise when we lock along it in

\l\xe’onposate direction.

In projective geometry of three dimensions, we might
define a sense-class by means of the vertices of a cémplete
pentagon, but it is easier to use Veblen's notion of a doubly

*Veblen and Young 2], I1, pp. 67, 422: Klein [3), pp. 12.17,

5
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oriented line (ABC, afy). This is a line associated with one
sense-class S(ABC) among the points on it and one sense-class
S(aBy) among the planes through it. Thus the line AB pro-
vides four doubly oriented lines: (ABC, a8v), (ACRB, av8),
(ABC, avf), (ACB, af8y). Two doubly oriented lines are said,
to be doubly perspective if they can be named (ABC, egy) and
(A'B’C’, o'B'y') in such a way that A, B, C, A/, B’, C’ lid.on
&, B ¥, a B, v, respectively. Two doubly oriented’liﬁés are
said to be similarly oriented if they are related byasgquence
of such “double perspectivities.” It can be proved® that
(ABC, afy) is similarly oriented with (ACB, a@yB)} but not with

- (ABC, av$), and that

) Y

2.54. There are just two classes of doaflzfy oriented lines, such

that any two doubly orienled lines avesimilarly oriented if and

only if they belong to the same clasy+

Intuitively, this is the distipE't‘fon between right-handed and left-
handed screws. The general restift is that a projective space is orientable
or unorientable according ag’its number of dimensions is odd or even.

o\, .

2.6. Triangulaf and tetrahedral regions. The plane-dual
-and space-dual’ef 2.51 may be stated as follows:

Two copldhar lines (or two planes) divide the rest of their
plane (Og.Qi space) into two classes of points, such that two
points in different classes are separated by the points in which
theirjoin meets the given lines (or planes), whereas two points
i the same class are not so separated.

L Such classes of points are called regions.t A third line (or
\/ plane) will in general subdivide each region. Hence

2.61. The sides of ¢ triangle ABC divide the rest of the plane
ABC inio four regions.

*Veblen and Young [2], 11, p. 440. Cf. Russell [1], p. 232.
{Veblen and Young [2], II, pp. 51-54, 385-400, -
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ABCp
A
3 2
N
— A
2/ 1 \ /B ABCfp C\ S

Fia. 2.6a

To distinguish one of these, we may proceed as foﬁows. A
line p, not passing through any of A, B, C, is dlv‘iﬁtd by BC,
CA, AB into three segments, lying respectivelyin three of the
four regions. The remaining region, to whi 'p is exierior, is
then denoted by ABC/p, as in Fig. 2.64, \

So also, three non-coaxial planes divide the rest of space
into four regions, each of which will.be ‘subdivided by a fourth
plane (not concurrent with the .(?f.ijérs). Hence

2.62. The faces of o tetrahedron ABCD divide the rest of space
into eight regions. PAN

We distinguish any ‘oge of these as ABCD/w, where w is an
exterior plane. )

The abovenrésults become quite obvious when we apply
them to afﬁn’é\sr)a(:e with ideal elements, taking one side of the
triangle(dr bne face of the tetrahedron) to be the line (or plane)
at infidity. Then 2.61 describes the four “quadrants,” and
26248k eight “‘octants.” '

N 2.7, Ordered correspondences. A correspondence be-
tween two ranges is said to be ordered if it preserves the relation
of separation. The points of the second range which corres-
pond to A, B, .. .in the first will be denoted by A, B/,. ...
Thus the correspondence is ordered if A'B’ || C'D’ whenever
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AB || CD. If the two ranges are on the same line (‘'super-
posed’”), the correspondence is said to be direct or opposite
according as it preserves or Teverses sense, i.e. according as
S(ABC) =or=S(A'B'C). A point which corresponds to itself
(A’ =A) is called a double point. As a particular direct correszs
pondence, we include the identity, in which every point is &
double point. Direct and opposite correspondences are gasiy
seen to combine like positive and negative numbers; e.g. the
product of two opposite correspondences is diretts These
notions extend in an cbvious manner to corres\fpfmdences be-
tween any kind of one-dimensional primitiy¢darms; e.g., ina
correspondence between two flat pencils, a\Jihe which corres-
ponds to itself is called a double line. 4D

Our first application of the Axiom of Continuity is in
proving the following lemma* (wﬁich we shall need several
times, notably in 2.84, where w& enumerate the double points
of a projectivity): N

2.71. If o ordered cotreép;éndence relates an interval AB/C fo
an interior interval AGBJC, then the laiier interval contains @
double point M, such.hat there is no double point between A and
M (in AB/C).», '
__ Proors, (It"is convenient to say, of points X and ¥ in
AB/C, that X precedes Y (and Y follows X) if S(XYC) =S(ABC).
 If Al qoincides with A, then A is itself the desired point M. i
‘B go%&ides with B, while every other point of AB/C precedes
itsicorresponding point, then B is the desired point M. Setting
N\ _aside these two extreme cases, We divide the segment AB/C
/ into two sets of points:
(i) Points P such that every point H which precedes P
precedes its corresponding peint H',
(ii) Points Q which follow at least one point K which does
not precede its corresponding point K.
*Enriques (1}, pp. 71-75. I
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We are assuming the existence of such a'point K; the second
set includes every point between this and B. To see that the
first set likewise contains some points, we observe that every
point between A and B, and in particular every point between
A and A, is related to a point between A" and B’. Hence, if
the correspondence is direct, so that A’ precedes B’ (as in
Fig. 2.7a), the first set certainly contains A’. H, on the other)
hand, the correspondence is opposite, so that A’ follows B’.\(as
in Fig. 2.7¢}, consider any point P between A and B~\'If P
precedes {or coincides with) its corresponding poiat)P’, then
every point which precedes P is related to a point "\ir;}iich follows
P’ hence the first set contains this P.  But if Pfollows P’, then -
P’ precedes its corresponding point P, and’ *k\:.y the same argu-
ment the first set contains this P, v

F1G. 2.7a \ F1G. 2.78 Fi16, 2.%c

Clearly, every point of the first set precedes every point of
the secon.d\'t}flence, by 2.13, there is a point M such that
“every point which precedes M belongs to the first set, while
every ';:)oint which follows M belongs to the second. (Actually,
Myitself belongs 1o the first.) By (i), every point H which
‘pigtedes M precedes its corresponding point H’; hence there
15 no double point preceding M. To see that M itself is a
double point, we again consider the two types of correspon-
dence separately. _

If the correspondence is direct, suppose if possible that M
is not a double point. If M foliows M/, then M’ follows M,
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contradicting (i). But if M precedes M’, as in Fig. 2.74, then
every point H between M and M/ precedes its corresponding
point B’ (which follows M'); this makes M’ belong to the first
set, which is absurd.

If, on the other hand, the correspondence is opposite, every \
point Q of the second set follows its corresponding pointaQh
since Q' precedes the point X' of (ii). TetHbea ﬁxecl\'ﬁafht
between A and M, and P a variable point between H'and M,

. asin Fig. 2.78. Then, the correspondence being dpposite, H'
follows P’, which follows P. Thus B follows eyéry point which
precedes M, and so either foliows or coincideswith M. Simi-
larly, for any point K between B and %.fthe corresponding
point K’ either precedes or coincides wi(th M. If M’ precedes
M, as in Fig. 2.7c, then every pointH' between M and M,
being also between A’ and M’ ,.cpr“responds to a point H be-
tween A and M, which is gbs'iird. Similarly, it is absurd to
suppose th:-. M’ follows My

_Henoe, finally, M is'a double point.

Although this rigorous proof (due to Enriques) is quite subtle, the
result is intuitively \t}vious when we think of a correspondence between
moving points. On a circular race-track, Tom runs from A to B while

Dick runs {ayé’pirt of the same ground) from A’ to B’; M is the place
where Tom\ﬁ;st passes Dick.

'\Qisthe case when the correspondence is opposite, we easily

sea that M is the only double point in AB/C. By applying the

N “$ame theorem to the inverse correspondence, we deduce that

) there is likewise just one double point in the supplementary

interval. Conversely, every opposite correspondence relates

a pair of intervals, one containing the other: for, if A’ is related

to A" (which may or may not coincide with A), then the two

intervals AR are related to the two intervals A7A”, one of
which is interior. Hence :

. +
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2.72. FEvery opposite correspondence has exactly two double
points. )
We shall see, in §4.1, that the points of a line can be represented by
the real numbersand . The relation #’ = %% is an example of an opposite
correspondence; its two double points are &=1. On the other hand, the
direct correspondence &’ =« kas four double poinis: 0, &, +1. In fact,
a direct correspondence may have any number of double points, from none
to infinitely many. R \:\

By 2.126, 2 perspectivity is an ordered correspondgn’cié; SO
also is the result of any sequence of perspectivities.y’f;hus, if
A, B, I, K in Fig. 2.4A are fixed, the correspondence between
C and D is ordered, since it is given by the gequence of per-
spectivities ’

I B K /N
ABCZAK JﬁAIL#\ﬁn.

By 2.41 and 2.53, this correspondenéé veverses sense. Ln other
words, ,:,’:’

2.73. The correspondence belween harmonic conjugates with
respect to iwo fixed poinis issgpposite.

If H(AB, CD) ant;l\EI(AB, C,D,), so that CiDy is another
pair in the same cg@sﬁond&nce, we have S(CDCy) =S(DCDy),
i.e. \

By 2.53, this ffieans that C; and D, do not separate C and D.

Hence ,»\':.\

2.7&(%[5’ fwo pairs of poinis on ¢ line are each harmonic con-

jugntes with respect to @ third pair, they do mot separate each
~lother. _

By applying 971 to the product of two correspondences of
the kind just considered, it is easy to prove* the converse
theorem (which plays an important part in the theory of
projectivities):

*Enriques (11, p- 77; Holgate [1], p. 36,
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2.75. If two pairs of points on a line do not separaie each other,
there s ai least one pair of points whick are harmonic conjugates
with respect to each of the given pairs.

2.8. One-dimensional projectivities. Following vom_
Staudt, we define a projectivity between two ranges {or,_fwo
pencils, or a range and a pencil) as a correspondence which
preserves the harmonic relation,* so that H(A'B', C’'B’) When-
ever H{AB, CD}; and we indicate correspondingzelerments by
formulae such as ' \\

_ ABC...gABC..
This relation is clearty reflexive, symmietric, and transitive.
(The analogous two- and three-diménsional correspondences
will constitute the main topic of Chapter 111.)

By 2.42, every perspectivity I a projectivity; so also is
any product of perspectivit.ie;é:“ We shall see (in 2.86) that,
conversely, every projecti\ﬁty can be constructed as a product
of perspeciivities; but.for' the present we shall be content to
treat such a product8a special case of a projectivity. In this
manner it is eas[{;ﬁvériﬁed that, for any four collinear points,

2.81. > ABCDxBADC.

This mea,né}th;;lt there is at least one projectivity which inter-
changg\a}\'ivith B, and C with D. Hence

‘\,§~' ABCD;ABADC/D CBAZCDAB.
In ‘particular,

O2.82. H(AB, CD) implies H(CD, AB).

2.83. Every projectivity is an ordered correspondence.
Proor. Given ABCD 4 A'B'C’'D’, where AB || CD, we
" have to show that A’B’ || C'D’. Suppose, if possible, that this
" +Von Staudt (1], pp. 49, 59; Enciques [1], pp. 78, 81, 84, 89, 101, 108.
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were not the case. Then, by 2.75, the second range would
contain points M’ and I, such that H(A'B’, M'N’) and
H(C'D', M'N’). These would correspond to points M and N
in the first range, such that H(AB, MN) and H(CD, MN). By
574 and 2.82, this contradicts our hypothesis that AB[|CD.

In particular, a projectivity between the points of one liné
is either direct or opposite. However, in contrast to the general
ordered correspondence, this special kind has the following
property: \ >

' 4 ':
S« 3

Fic, 2.8

2.84, A projectivity w}gf’ck\kas move than iwo dowble points is
the identity. AN '

Proor. Sup‘pE\e, if possible, that we can have a non-
trivial projectiyity with three double points A, B, C, so that
for some point"P, :

O
A& ABCPABCP

withfﬁ‘ distinct from P.  (Fig. 2.84.) Since the double points
were named arbitrarily, we may suppose that AB || CP. Then,
\m \by 2.83, AB || CP'; and there is no loss of generality in sup-
posing that, in the interval AB/C, P lies between P and B.
Since the projectivity relates the interval PB/C to the interior
interval P'B/C, 2.71 reveals the presence of a double point M,
such that there is no double point between P and M. Applying
the same theorem to the inverse projectivity, which relates
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PA/C to PA/C, we find another double point N, such that
there is no double point between P’ and N. Since the segments
PM /C and P'N/C overlap, there is no double point in M¥/C,
But the harmonic conjugate of C with respect to M and M is
clearly a double point, and lies in MN/C., Thus we have proveck
the theorem by reductio ad absurdum.

The following has been called the Fundamental ’Iﬁe‘ﬁ%m
of Projective Geometry: As

2.85. A projectivity between two ranges is unigquely determined
when we are given three points of one and the corfeSponding three
points of the other. \V

Proor. A product of perspectivi’t;i‘,e} 'i)y which ABC 1
A’B’C’ can be chosen in many ways,.s&h as the following. If

“ the two ranges are on distinct links) as in Fig. 2.88, take any

i

point Co on AB’, and use centfes 'O, =(BB’, CCo), 0;={AA/,
CC). Then - 3% _
AB Q'O—li BCo AB'C
o 4 W ’ -',_\- '
If AB and A'B’ rgskew lines, this construction may be de-
scribed more simply by saying that the related ranges are
traced out b{' a-pencil of planes (with axis 0,0;). If the two
ranges arelon one line, a range related to one of them can be
obtained by applying an arbitrary perspectivity, and then we
progeed” as’ before (thus using three perspectivities in all).

Denote this product of perspectivitiés (in either case} by @,

(and let 0 be any projectivity having the same effect on A, B, C.

Then, since -
AQE™1=A'g1=A,
and similarly for B and C, the “quotient” projectivity 6®7! has

three double points. By 2.84, 8¢ '=1, and ©=%. Thus the
projectivity is unique.
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Fic. 2.8s

As an immediate corollary, we have
2.86. Every projectivity can be constmcted.@z‘ke product of two

7

or three perspectivities. ~

In one important case, a single perspectivity suffices:
2.87. If a projectivity between the paints of fwo distinct lines has
a double point, it is a perspeciivity.

Proor. By 2.85, thege‘ié ‘only one projectivity by which
ABCRABC. (See“{ig. 2.8c.) Using the centre O =(BB',
CC’), we have ABC==AB'C.

SR

A projectivity'in one line is said to be elliptic, parabolic, or
kyperbolic, agcording as the number of double points is 0, 1,
or 2 (these/being the numbers of points at infinity on the three
types af(¢oric in Euclidean geometry). As a special case of
2.72, wethave

?.88 Every opposite projeciivity is hyperbolic.
\Tflerefore every elliptic or parabolic projectivity is direct. On
the other hand,

2.80. A hyperbolic projectivity is opposite or direct according
as the double poinis do or do not separate a pair of corresponding
points,
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PrOOF. Let M, N be the double points, and AA’ anv pair

of corresponding points. We merely have to com pare S(MMA)
with S(MNA’}, using 2.53.

2.9. Involutions. We now consider a concept which will ~
be seen to have a fundamental bearing on the subject of ngn-
Euclidean geometry. By its aid we shall define coordigatés
in Chapter 1v, and metrical notions in Chapter v. Af Jive-
Iution* is a projectivity of period two (82=1), i(e::"a non-
trivial projectivity which is its own inverse (6™ =821). From
2.81 and 2.85 we easily deduce . ."’:,\\

2.91.  Any projectivity which has one doubgjqqgrrespoﬁdéng pair
(AA # A'A) is an involution. \ &

A A ¢ Ni%' C

\\ " Frc 2.9a

By a furthg,{”épi:)lication of 2.81, we obtain the relation
s AABCRAACE
."\‘~

as a neeessary and sufficient condition for the pairs AA’, BB’,

cc’ :cq‘%long to an involution. Three such pairs of points are

Sa'iti: to form a “quadrangular set,” for the following reason.

“Bet’ O denote the diagonal point (IL, JK) of a quadrangle
\I]KL, whose sides meet a line in points A, B, C, A, B, C, as

in Fig. 294, Then

I L
4 — i 2
AABCKAOK]_AAA’CB.

*Von Staudt (1}, pp. 118-122; Enriques [1), pp. 124-129, 138.
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Heiice :
2.92. The pairs of opposite sides of a quadrangle meet any
coplanar line (not through a verlex) in three pairs of an invo-
lution. _

An involution may be elliptic or hyperbolic; but it cannot{

be parabolic, as the following theorem shows: o
ne

2.93. If an tnvolution has one double point it has anothéﬁ’ and
any lwo corresponding points are harmonic canjugulgs with

respect to the two double poinis. 40

Proor. Let AA’ be any pair of an involutiai} in which M
is a double point. Then the harmonic conjugate of M with
respect to A and A, being also the ha rﬁ,&lic conjugate of M
with respect to"A’ and A, is a second dauble point.

The following two corollaries, aré casily deduced:

204, If a hyperbolic pro_}emwfy has a pair of correspondmg
poinls whick are harmonic wnjugates with respect fo the double
potnts, it 15 an inveluiion. _

2.95. The relation MN AA" x MNAA 45 equivalent o
H(MN, AA"), \\

By 2.88, everyopposite involution is hyperbolic, By 2.73,
every hyperb’&li‘c involution is opposite. Hence
2.96. An"aﬂvoluﬁwn is elliptic or hyperbahc according as it is
direct ‘a{ ppposﬂe

If the involution determined by pairs AA’ and BB’ is
N eﬁlptm and so direct, we have S(AA'B) =S(A’AB") #S(AA'B’}),

Nand AA’ || BB'. Similarly, if the involution is hyperbolic we
have S(AA'B) =S(AA'B’). Hence
2.97. An involution is elliptic or hyperbolic according as two of
its pairs do or do not separale each other.

If & and ® are two involutions in one line, we have 871=0,
$1=&, and (03) 1=9"10"1=38. Hence .
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2.98. Twoinvolutionsare permuiable if and only if their product
s an involulion.

We are now ready to prove a theorem which will enabie us
to define reflections and translations in Chapter v: ~

2.99. Given two poinis A and B, and an elliptic involution. <£ i
the line AB, there are jusi two projectivities which are perm‘zxmbye
with G and relate A to B.  One of these is @ hyperbolic, mwlumm
and the other is elliptic (but is not an involution uﬁlexs A and B
are a pair in Q, in which case o coincides with &Q

Proor. If A and B are not a pair in (e define A’ =AQ,
B'=BQ. If there is a hyperbolic or pa(rxbohc prOJectmty i,
such that 02 =2 and AP =B, suppdsé’that it has a double
point M, and define M’ =MQ. Thea'

M’ =MQP = M@Q Ma=M’

is another double point, and §> 15 hyperbolic (not paraboiic).
Since

MdQ = M' and M'6Q=M,
the product ®Q is an, mvolutlon (by 2 91) Hernce
(¥Y=20 . 00 = (30)=
and ® is itself an\\wolutlon
Since A’@ =B, the only possible involution which is per-

" mutable vmth 2, and relates A to B, is that determined by the

pairs AB{, /B, Conversely, the involution ® so defined is in
fact%ermutable with ©; {or, since

A®Q=BQ=B’ and B'®02=A'Q=A,

:@Q is an involution. M oreover, ® is in fact hyperbolic; for, by
2.97, AA' || BB, and therefore A and B do not scparate A’

and B’,

_1If there is a non-involutory (and therefore elliptic) pro-
jectivity ¥, such that Q¥ =¥Q and A¥ =B, we define C =A¥ 1,
C’'=CQ. Then C'¥=4A’, and A’ =B’. Thus

AACC 7~ BBAA" £ A’AB'B,
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Aa’, CB', BC’ are three pairs of an involution, and
AACBRAABC £ AABC.

{The last projectivity used here is . ) It follows, by 2.95, that
H{aA', BC). Thus ¥ is determined as the projectivity by

which A A’C x BB'A, where C is the harmonic conjugate of B \

with respect to A and A’. Conversely, the projectivity. g! so
defined is in fact permutable with @; for, 0¥ and ¥2 have the
same effect on each of three points, namely R 3
(AA'CYQY = (A’AC)¥ = (B'BA’) =(BB'A)Q; wm’C)‘Ifﬂ
If, on the other hand, A and B are a pait’ in'Q (so that A’
coincides with B, and the previous const;uc}ron breaks down),
tet O be a projectivity such that Q0 =6R.and A9 =B. Then,
since AV .
BO=A020=A6: =Bo=A,
© must be an involution. Smee A and B are interchanged by
both © and 6, they are unchai]ged by the product 6. Hence
either 90 =1, ir which gasc 0=0, or 020 is the hyperbollc
involution with double.pomts A and B, in which case € is itself
hyperbolie, by 2. 96\\ 4

N\



. CHAPTER 111

REAL PROJECTIVE GEOMETRY: POLARITIES, CONIGS
AND QUADRICS N\

. 3.1. Two-dimensional projectivities. The histary)of
conics begins about 430 B.C., when Hippocrates of, Chios ex-

_ pressed the “‘duplication of the cube” as a probletirywhich his

followers could solve by means of intersecting,trves. Some

seventy years later, Menaechmus showed that these curves
can be defired as sections of a right cichlgr cone by a plane
perpendicular to a generator. Their métyical properties {such

- as the theorem regarding the ratio,’o}\{:he distances to focus

N
%
\ }
\
r

and directrix) were described inf great detail by Aristaeus,
Euclid, and Apollonius.* ApéMonius introduced the names
ellipse, parabola, and hype;bpla; and discovered the harmonic
property of pole and poléf: But the earliest genuincly non-
metrical property is th.theorem of Pascal (1623-1662), who
obtained it at the ageof sixteen. (See 3.35.) A hundred years
later, Maclaurinused similar ideas in one of his constructions
for the conic thivough five given points.t The first systematic
account of\projective properties is due to Steiner (1796-1 863).
But his definition in terms of related pencils (3.34) lacks sym-
met({,:‘a\s it specializes two points on the coric (the centres of
the pencils): moreover, several steps have to be taken before

_the ‘self-duality of a conic becomes apparent. Von Staudt
(_X1798-1867) made the important discovery that the relation

which a conic establishes between poles and polars is really’

more fundamental than the conic itself, and can be set up

mdfependently (§3.2). This “polarity” can then be used to

define the conic, in a manner that is perfectly symmetrical and
*See Zeuthen [1]. tMaclaurin [1], p. 350.

48
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immediately self-dual: a conic is simply the locus of points
which lie en their polars, or the envelope of lines which pass
through their poles. Von Staudt’s treatment of quadrics is
analogous, in threc dimensions.

We shall find projectivities easier to define in two or three
dimensions than in one (as there is no need to mention the
preservation of harmonic sets). But we have to d1st1ngu1sh\
two kinds: collineations and correlations. ‘ O

A collineation between two planes (which may coifxci’(‘ie) is
a correspondence which relates collinear points.fo “Collinear
points, and consequently concurrent lines to cangutrent lines;
in other words, it is a point-to-point and line*o-line corres-
pondence preserving incidence. Since thx&transforms a quad-
rangle into a quadrangle, it automatlca'lly preserves the har-
monic relation; and the correspondenee “induced” between
two corresponding ranges is a one—cilmensmnal projectivity.

3.11. Any collineation :wﬁicfz ieaves a quadrangie or quadri-
lateral invariant is the identity.

)

Proor. If the founsides of a guadrilateral are invariant,
s are its six verticé®y Since then three points on each side are
invariant, 2.84 SHows that every point on each side is invar-
iant. Hencej‘every line in the plane (joining points on two
distinct sides) is invariant, and so also every point. The dual

argumen’c\estabhshes the same result for a quadrangle.

. fﬁ other words, any collineation which leaves four inde-
ﬁsgndcnt points (or lines) invariant is the identity.

3.12. A collineation is uniquely determined when a pair of
corresponding quadrangles or quadrilaserals is assigned.

Proor. Such a collineation is easily constructed by means
t
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of a sequence of perspectivities* (three or four, according as
the two planes are distinct or coincident). Its uniqueness fol-
lows from 3.11.

It can be proved that the only involutory collineations in a
plane are harmonic homologies, having any given point O s
centre and any line o, not through O, as axis. Such a cofes-
pondence relates each point A in the plane to its hatmonic
conjugate with respect to the two points O and (g,j.,O‘A), and
consequently relates each line a to its harmonic cony ugate with
respect to the two lines o and O(o, a). '",j\“

L .
~ Fi1c. 3.1a

> N

O\ g
3.V The product of three harmonic homologies, whose
centrés and axes are the vertices and sides of o triangle, is the

tdentity.
S

L)
a\"
\ 3

Proor. Let ®, &, &’ be the homologies, with centres
0, 0/, 0" and axes 0’0", 070, OC’. Take four points, A, B,
A’, B, such that H(QO’’, AB) and H(O'O"’, A’B"), as in Fig.
3.1a. Then @ interchanges A and B, leaving the other points
invariant; similarly & interchanges A’ and B’; but @ inter-

*Robinson {1], pp. 183-187. Ci. von Staudt [1], pp. 60-66, 125,
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changes both pairs. Hence $&'®’ leaves all four points invar-
iant and (by 3.11) is the identity.

We come now to the second kind of projectivity. A cor-
relation between two planes {which may coincide) is a corres- ,
pondence which relates collinear points to concurrent lines;
and consequently concurrent lines to collinear points; in othex
words, it is a point-to-line and line-to-point correspordence
which preserves incidence in accordance with the prmmple of -
plane-duality. Thus, if it relates a pomt A toa lme a’;and a
line b to a peint B/, then B’ lies on a’ if and only if b passes
through A. Since the correlation transfernis\avharmonic set
of four points into a harmonic set of fourMines, it induces a
projectivity between the points of b anc{the lines through B/,
Clearly, the product of two correfatidns is not a correlation
but a collineation; in fact, collmeatmns and correlations com-
bine like positive and negative n‘umbers

/"i) 2

E
\'\\:“’ F1G. 3.1B

\’«1'4. A correlation 1is uniquely delermined when a quadri-
l‘ateml and the corresponding quadrangle are assigned.

ProorF. By associating the vertices E, F, G, H, I, J of the
quadrilateral with the sides e', ¥, g’, W, ¥, j’ of the quad-
rangle, as in Fig. 3.1B, we establish one-dimensional projectiv-

itiesEF G 7 e'f'g’and E1 J 5 €1'j’, which enable us to associate

-any points P on EF, and Q on EI, with definite lines p’ through



N
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(e’,£), and g’ through (¢, i’). In this way we obtain a definite
point (p’, ¢') corresponding to any line PQ. Let (p1, qi),
(P2 @2), (Ps, 9a) be the points corresponding to three con-
current lines PiQ,, P:Q2, P3Qs. Then

e'pipsPs5 E P\P:Pa= E Q:Q:Q: = R PUPLES

. oA\
Hence, by the plane-dual of 2.87, these three points, :kré"cm-
linear. This shows that the correspondence we have set up is
in fact a correlation. It is unique since, if ' and {7 ywvere two

such, we would have T'T1=1,by 3.11. (We cogldhave proved
3.12 similarly, without using a sequence of perspectivities.)

QY

3.2. Polarities in the plane. A {aﬁ}}ﬁ@ is a correlation
of period two, i.e. a correlation whi.ch’:is its own inverse, so that
if it relates any point A to a line &Nt also relates a to the same
point A. We call A the pole o2, and a the polar of A. TfB
lies on a, its polar, b, passes through A. We call A and B
conjugate points, a and b zonjugaie lines. The polarily indaces
an involution of conjigate points on any line which is not
setf-conjugate, aiQ‘.a‘n involution of conjugate lines through
any point whigh 18 not self-conjugate.*

We shall’sg’é:iﬁ §3.5 that, in certain three-dimensional polaritics, every
point is self-conjugate. However, there are no such “null” polarities in
two dirgenginns; in facr, it is impossible for a line to contain more than iwo
self-;iq'ju'gate points, {

polarity is a correlation, a correfation is a correspondence, and we
chnisistently use this last word in the strict sense of "‘one-to-one cories-

iu\pc;ndence." Thus, in the definition of a correlation between two planes,

we mean that every point in the first has a definite corresponding line in
the second, and that every line in the second corresponds to a definite point
in the first. The “‘trilinear polarity” of §2.4isnot a correspondence in this
sense {for, the trilinear pole of a side of the triangle is partially indeter-
minate)., Moreover, it does not relate concurrent lines to collinear points.
Thus it is not a true polarity, and to that extent its name is unfortunate.

*Von Staudt {11, pp. 131-136.
tEnriques [1], pp. 184-185,
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Several theorems, originally stated for conics, are really
properties of polarities; e.g.*

3.21. Hesse’s Theorem, If two pairs of opposite sides of
quadrangle are pairs of conjugate lines in a given polarily, so is{
the third pair. \
\

Proor. Let the sides of the quadrangle IJKL meet'the
polar of L in the points A, B, C, A/, B’, C, as in Fig, 29A If
the sides IL and JL are respectively conjugate to IK and 1K,
their poles are A and B. Hence the mvolutlon\of conjugate
points on the polar of L contains the pairg A¥, BB', which
suffice to determine it. By 2.92, it also coQtams the pair CC’.
Hence KL is the polar of C, and is con_]s(gate toIJ.

By considering the triangle formeﬂ By the poles of JK, KI,
I3, we immediately deduce R\

3.22. Chasles’s Theorem. Jf the vertices of one triangle are ihe
poles of the sides of aﬂotker, the joins of corresponding vertices are
concurrent (as in 2, 32) \

The two- dlme’flé}onal analogue of the one-dimensional
theorem 2.91 is a8 follows:

A</
3.23. Any'correlotion which transforms each vertex of one fri-
angle infofie opposiie side is ¢ polarity. :

-’P.'RBOF. Let the vertices and opposite sides be A, B, C and

arby »¢. A correlation which transforrs B into b, and Cinto ¢,

\ “aleo transforms BC =a into (b, ¢) =A, and so interchanges the

vertices with the opposite sides. Let P be any point not on

a side, so that the corresponding line p does not pass through

a vertex. By 3.14, ABCP and abep suffice to determine the
correlation. Construct the six points

*Hesse [1], p, 301; Chasles [2], p. 08,
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P, = (AP, a), P, =(BP, b), P.=(CP, ¢),
Al:\:(a' p): Bn={bl P Cp'_"(cr P)-

For each point D on a, there is a corresponding line d through
A, and the correlation induces in a a projectivity between
points D and {(d, a).  This projectivity, in which BCP,
CBA,, is an involution, and so transforms A, into P,. :I‘\hqs,
when D is A, d is AP, or AP; similarly the line correspanding
to By is BP. Hence the correlation transforms p=A;B; into
P =(AP, BP), and is a polarity. N

y Y
7
//
s fle
/ / ¢

Pc, n ,a A

A B & A
F{}3.2a Fic. 3.28

Given AB\C. P, and p, the polarity is determined. Such
a triangL’eﬁLBC is said to be self-polar. Any two vertices or
sides%ie conjugate. A given polarity has infinitely many self-
pol:a:r triangles; for, A and B may be any two points which are

M:Ob'njugate, but neither self-conjugate, and then C is deter-
\ ymined as {a, b).

A polarity is said to be hyperbolic or elliptic according as it
does or does not admit a self-conjugate point (i.e. a point
which lies on its own polar). The following theorem shows
that both types exist:

3.24. If pisaline noi through any vertex of a self-polar triangle
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. ABC, and P is iis pole, ihe polarily is elliptic or hyperbolic accord-
ing as P lies in the region ABC/p or in one of the other three
regions determined by the iriangle,

Proor. If P lies in ABC/p, as in Fig. 3.2a, we have
BC || PA, CA || P,B,, AB H P,;C,,,

N

A
and the involutions of conjugate points on the sides of $he
triangle are all elliptic (by 2.97). Hence, if we take\a fiew -

position for p, the same separations must hold, and\again P
liesin ABC/p. Since it is then impossible for P to{ie‘on p, the
polarity is elliptic. But if P lies in one of the other regions,
as in Fig. 3.2B, two of the above separatiefs cease to hold,
and two of the three involutions are hy e'l'b\)lic. The double
points of these involutions being self*¢onjugate, the polarity

is hyperbolic. - s

”\'.\'“ Fic. 8.3
{ N IG. a.0A
QO
3:3; Conics. With reference to a given polarity, a non-
,aeif}éfmj ugate line {or point) is said to be elliptic or hyperbolic
\@écording to the nature of the involution of conjugate points
on it (or lines through it). Thus, if the polarity is elliptic, all
lines and points are elliptic; but if it is hyperbolic, every self-
polar triangle has one elliptic side and vertex, two hyperbolic
sides and vertices, as in Fig. 3.3A. Hence, in the latter case,
every point on an elliptic line is hyperbolic, and likewise

Q"
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every line through an elliptic point. But every hyperbolic
line contains two self-conjugate points, which separate® its
elliptic points from its hyperbolic points; and every hyperbolic
point lies on two self-conjugate lines, which separate the
elliptic and hyperbolic lines through it. On the other handh,
the only self-conjugate point on a self-conjugate line Jigs s
pole, and the only self-conjugate line through a self-cof Tugate
point is its polar, « N

Following von Staudt, we define a conic as the cfass of self-
conjugate points and lines in a hyperbolic polarity”. The points
are said to lie on the conic, and the lines afe)called faengents.
The pole of a tangent is its point of conigel: Hyperbolic lines
(each containing two points on the ¢bnic) are called secants.
Hyperbolic points (each lying onw tangents) and elfiptic
lines {containing no points on the\conic}) are said to be exierior.
Elliptic points (through whichl MO tangent passes) are said to
be interior.

(These notions are particularly relevant to the subject of
this book, since the jhferior of a conic provides the most im-
portant model for hyperbolic geometry.}

The polar Qf\a}n exterior point P joins the points of contact
of the two tangents through P. For, if these tangents are m
and n, wit}u\points of contact M and N, then MN is the polar
of (med)=P. (See Fig. 3.38.)

;@'Ié polar of an interior or exterior point C contains the
hatmonic conjugate of C with respect to the two points in

{ywhich any secant through € meets the conic. For, these two

points are the double points of the involution of conjugate
points on the secant. 1t follows that the conic (asa whole) is
invariant under any harmonic homology whose centre is the
pole of its axis, and that the diagonal triangle of an inscribed

*Strictly, this separation needs further discussion. Sec Enriques {1}
p. 262,
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quadrangle (or of a circumscribed quadrilateral) is self-polar.*
P

c /M C P NN\
L0

FiG. 3.38

3.31. A definite conic is determined whes ¥wo langents, their
points of contact, and a peir of conjugazg’j{éikts are given.
Proor. Let MP and NP be gi¥eén’as the tangents at M
and N, let A and B be the given, conjugate points, and let C
be the harmonic conjugate of ,Cf%"(AP, MN)} with respect to
M and N, as in Fig. 3.3B. Céﬁsider the definite correlation
which transforms M, N, PAA into MP, NP, MN, BC, and
consequently transfornis\sMN into P, PA into C, and C’ into
PC. This induces.inMN a projectivity which relates C’ to c
and has double ppﬁ}ts M and N. By 2.94, the projectivity is
an involution y-ge.the correlation transforms C into PC’. We
can now apply3.23 to the triangle PCC'.
3.32.,~\'S¥ydewitz's Theorem. If a triangle is inscribed
nma g&i’c; any hme conjugate to one side meels the other two sides
in contjugate poinis.
o~ ) Proor. Let the sides LM and LN of the inscribed triangle
\_ULMN meet the tangents at N and M in N and M respectively,
asin Fig: 3.3c. For every point A on LM, there is a conjugate
point A’ =(a, LN) on LN. Since the range of points A is pro-
jective with the pencil of polars a, this correspondence between
A and A’ is a projectivity, and is determined by LMN A
*Von Staudt [1], pp. 187-143.
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L M'N. By 2.87, the projectivity is a perspectivity with
centre P=(MM’, NN’). Hence the pairs of conjugate points
on LM and LN (respectively) are cut out by the pencil of lines
through P, the pole of MN.

3.33. Steiner's Theorem W By Joining all the poinis on a

conic to any two fixed pmnts\ B2 the conic, we obiain two projec-
tively related pencils. ¢

ProoF. Let Miand N be the two fixed points, and L a
variable point on*the conic. On any fixed line conjugate to
MN, the lines ML and NL of the two pencils determine a pair
of con]ugate\Pmnts, A and A/, asin Fig. 3.3c. Since such pairs
of points/belong to an involution, the pencils are projectively
relatedr\\‘ln particular, the lines MN and MP of the first
penml are related to the lines NP and NM of the second.

\ Conversely,

\3 34. The poinis of intersection of corresponding lines of two
projectively related pencils in one plane, with distinct cenires
M and N, are the poinis on a conic through M and N, provided
MN is not a double line in the projectivity.

*Steiner 1}, p. 139.



§l.4 ProjecTIvITIES ON 4 CoONIC 59

ProoF. Suppose the lines MN, MP, ML of the first pencil
are related to the lines NP, NM, NL of the second. Then the
desired conic is determined by the polarity in which L is self-
conjugate while the polars of M, N, P are MP, NP, MN. (Use
3.31, with the conjugate points coincident.)

Most text-books on Projective Geometry give 3.34 as the,
definition of a conic. Steiner’s Theorem reconciles the twor
alternative treatments, and allows us to use the customary
proof* for the dual theorems of Pascal and Br1anchah

3.35. Pascal’s Theorem. 3.36. Bria.nchonhs Theorem.
IfFL M, N L' M, N ere If 1, m’, s,\\I', m, n’ are
any six poinls on a conte, the any six &a)&gmts to a conic,
three points (M'N, MN'),  the thegekines (m’, n) (m, n'),
(N‘L, NL'), (L'M, LM’} are (', (X1, 1), ¥, m) (1, m"} are
collinear. concurrent.

al

3.4. Projectivities on a-gonic. Since the two pencils of
3.33 are in ordered correspendence, any such pencil defines a
definite order for all the 1}01111:3 on the conic, Thus the Axioms
of Separation hold for points on a conic, as well as for points
on a line. Accordingly, we extend the meaning of the word
range to 1nclud&such a class of points, and say that two ranges
on the coniggre projectively related if the pencils joining them
to any "I‘l‘pomt on the conic are projectively related.f Any
such ptojectivity, relating patirs of points on the conic, carries
w:th it a projectivity relating pairs of tangents (the polars of
't\l;[e pomts) A projectivity on a conic, as on a line, may be

irect or opposite, elliptic or parabolic or hyperbolic, and it is
an involution if it admits a doubly-corresponding pair.

*Cremona [1], p. 121, or Robinsen [1], p. 39.
{Similarly, we can define projectivities between two distinct conics.
See Bellavitis [1], p. 270; von Staudt [1], pp. 149, 158.
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It is a simple consequence of 3.35 that every projectivity
on a conic has an axts, which contains the intersection of “'cross-
joins” of any two pairs of corresponding points, as in Fig. 3.4A.
The double points, if any exist, lie on the axis; therefore the
projectivity is hyperbolic, parabolic, or elliptic, accerding ds\
its axis is a secant, a tangent, or an exterior line. A hypepholic
projectivity may be opposite or direct, as in 2.89. ™

By applying the polarity which defines the conic, weGeduce
that the projectivity of tangents has a cenire, whip’ﬁ’ Ties on the
join of “cross-intersections” of any two pairs of éorresponding
tangents. \Y;

FiG. 3.4a .

N\
\“
. 3’11 Any prejectivity on a conic determines a collineaiion
rof'the whole plane. '

N/ Proor. If the projectivity is given by LM N« LM,
let P and P’ be the poles of MN and M'N’. By 3.12, the quad-
rangles L M N P and L'M/N’P’ are related by a definite collin-
eation, which transforms the given conic, as determined by
points L, M, N and tangents PM, PN, into the same conic as
determined by L/, M’, N/, P'M’, P'N’. In other words, this
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collineation preserves the conic and induces the projectivity.
In particular, a harmonic homology whose centre is the

pole of its axis induces on the conic an involution, efliptic or

hyperbolic according as the centre is interior or exterior.

3.5. The fixed points of a collineation. In one dimens
sion, an elliptic projectivity leaves no point invariant. I\f is)
remarkable, then, that a two-dimensionai collineation (jn. one
plane) always has an invariant point somewhere. (1§ may
have more than one; e.g. a homology has infinitelyanany.) To

. . AN
see this, we need the following lemma. QO

3.51. If tawo coplanar conics have a copmon point, at which
their tangenis are distinct, they hove af 1east one other common
point. ANV

To save space, we omit the formal proof.* The result is
intuitively obvious if we think_aﬁ{gi variable point on one conic,
moving so as to cross the otbeiif * Since the first conic includes
both interior and exterionpoints of the second, considerations
of continuity show that{there must be at least two points of
intersection. (\J

Fic. 3.5a

3.52. Every collineation of @ plane into itself has at least one
tnvariant potnt,

*Enriques [1], pp. 204-298.
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Proor. 1f the collineation has two invariant lines, their
point of intersection is an invariant (i.e. self-corresponding)
point. If not, let L be a point not lying on any invariant line,
so that, if L is transformed into M, and M into N, the line LM
is distinct from MN, as in Fig. 3.5A. The collineation induces
a projectivity between the lines through L and M, and between
the lines through M and N. Since LM and MN-are not
invariant, the loci of points of intersection of correspondmg
lines are conics: one through L and M touching; WMIN, and one
through M and N touching ML. These two ‘conics, having
distinct tangents at their common point«M; have at least one
other common point, say O. The colhs@a‘cmn transforms LO
into MQ, and MO into NO; thereforgo is an invariant peint.

The two conics may have fourcommon points. Then the
collineation has three invariant peints.

3.6. Cones and regttﬁ" By applying space-duality to
§83.2 and 3.3, we obtains ‘the analogous theory of polarities in
a bundle, i.e., of involutory correspondences between lines and
planes through oné fixed point. Sucha poIarlty may be elliptic
or hyperbolic, a}ra‘m the latter case its self-conjugate lines and
planes are the generalors and tangeni planes of a guadric cone.
Every propérty of conics leads to a corresponding property of
cones; £g. the space-dual of Brianchon’s Theorem 3.36 is the
follﬁ,mg If1, m’, n, 1, m, 0’ are any six generators of a cone,
the three lines (m’n, mn’}, (n'l, nl’}, (m, lm’) are coplanar.

" \ A more interesting system of lines may be defined as fol-

“lows.* A regulus is the class of lines which meet each of three
skew lines &, b, ¢. The lines are again called generalors.

Every plane through ¢ meets 2 and b in two points whose
join, AB, is a transversal of the three skew lines. The generatar
AB, meeting ¢ at C, may also be described as the intersection

*Enriques [1], p. 333.

£
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of planes Ca, Cb. Thus the reguius is a self-dual figure, each
generator being both the join of corresponding points of pro-
jectively related ranges on a and b, and also the intersection
of corresponding planes of projectively related axial pencils
through a and b.

The transversal to two generators AB and A'B’, from an
point D'/ on a third generator A”’B", determines points D\'ahg
D', such that ABCD fA'B'C'D’. By 2.85, the projectivity
thus established between AB and A'B’ is indepencléfif"of the
choice of A”"B’. Hence the given regulus deterntines another
assoctated regulus, such that every generator. af\gither regulus
meets every generator of the other. (The fénerators of the
associated regulus include the original li{‘é‘s'\a', b, c.)

The above remarks suffice to pro.ve‘:the following theorem:

3.61. If four skew lines have fwo\ transversals on which they
determine prajectively related ragiges, they belong to a regulus, and
50 have an infinity of transveksals.

The remaining possiE{i'fities for four skew lines are as follows:

L)
3.62. If four skewrdinés do not belong to o regulus, the number
of their transversgls may be 0, 1, or 2,

Proor. (The regulus determined by three of the four skew
lines is geQ:(e}‘éted by corresponding planes of two axial peacils,
which et the fourth line in projectively related ranges. There
will ];;t-\a transversal for each double point in this projectivity
(& for each point in which the fourth line meets the regulus).

N\ 3.7. Three-dimensional projectivities. In space, a ¢ol-
lineation can again be defined as a correspondence wliich re-
lates collinear peints to collinear points; it consequently relates
flat pencils to flat pencils, and planes to planes. It. clearly
induces a collineation between any two corresponding planes,
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and a projectivity between any two corresponding liries or
pencils.

3.71. Any collineation which leaves a complete peniagon or
pentahedron invariant is the identity. o

Proor. If the five faces of a complete pentahedroi™are
invariant, so are its ten edges and ten vertices., Simeestien
three points on each edge are invariant, 2.84 shows that every
point on each edge is invariant. Hence every plane (joining
points on three distinet edges) is invariant, an(iéo also every
line and point. The dual argument establishesthe same result
for a complete pentagon. PN

Any given point O and plane «, nptjincident, are the centre
and axial plane of a harmonic homaiagy. which relates each
point A to its harmonic con]ugate with respect to the points
O and (w, OA). R\

™
~

3.72. The product gf four harmonic homologies, whose cen-
tres and axial planes ar}sthe vertices and faces of a tetrahedron, is
the identity. \\ ™

NS

Proor. Lkt B, @', @, & be the homologies, with centres
0, 0, 0", 0’3‘" Take six points A, B, A’, B’, A’’, B”, such that
H{00Q, A:B) H(O’'0"", A'B"), H(O”0Q'"', A”B”’). Then A and
B are\.qterchanged by & and again by &', A’ and B’ by 2’ and
ag?ﬂ,h’\by @', A” and B” by ®” and again by &’. Hence
DB'D'®' =1, preserving all six points, of which five form a
\m \eomplete pentagon (ABA’A”B‘ or ABB’A"B"').

In three dimensions, as in one dimension, we can distin-
guish two kinds of collineation: direct (preserving sense) and
opposite (reversing sense).  For, by the definition of a ‘double
perspectivity” on p. 34, any collineation preserves similarity of
orientation (for a pair of doubly oriented lines). In other
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words, to see whether a given collineation is direct or opposite,
we merely have to test its effect on one doubly oriented line.
Consider, for instance, the harmonic homology & and the
doubly oriented line (OAB, afvy), where B is the harmonic
homologue of A. This is transformed into (OBA, a8y). Hence
3.73. A harmonic komology is an opposite collineation.

A correlation in space is a correspondence which relatés

collinear points to coaxial planes, and so preserves 1nc:dgﬁce
in accordance with the principle of space-duality. Itdearly
induces a projectivity between the points of a lipé& and the
planes through the corresponding line. Theorem3: 14 is readily
extended as follows:*

3.74, A correlation is uniquely determined golen we are given a
complete pentahedron and the correspondnigﬁmplete pentagon.

3.8. DPolarities in space. A leanty is a correlation of
pericd two, so that if it relates any.peint A to a plane a, it also
relates o to A.  We call A the pole of a, and a the polar plane
of A. If B lies on o, its polarplane, 3, passes through A. We
~ call A and B conjugate poits, a and 8 conjugate planes. Since

AB lies in the polar pla,m’ébf any point on {a, 8), two such lines
are symmetrically rélated; we call them polar lines (of each
other). Two lined are said to be conjugate if either meets the
polar line of théwther. If there is a plane a which is not seli-
con]ugate, thevpolar planes and polar lines of the points and
lines in « &ill meet a in lines and points according to a plane
polarits,s vhich we say is induced by the polarity in space.
Sm'ufarly, an involution is induced in any line which is neither
p S&ILConjugate nor self-polar. If BCD is a self-polar triangle
for the polarity induced in the polar plane of a non-self-con-
jugate point A, the tetrahedron ABCD is said to be self-polar.
Any two vertices or faces are conjugate; any two opposite
edges are polar lines,

*Von Staudt [1], pp. 60-69.

&

Q"
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Arguments similar to those used in proving 3.23 and 3.24
suffice for the following analogous theorems:*

3.81. Any correlation which transforsms each veriex of one teira-
hedron inlo the opposite face is a polarity.

'3.82. Iforis a plane not through any vertex of a self- polar zetm-
hedron ABCD, and P is its pole, the polarity does noi, orrdoes
admit a self- con_;ugate poini, according as P lies in dhe region
ABCD/w or in one of the other seven regions dezexmme:d by the
tetrahedron,

In the former case the polarity is saldibbe uniferm {or
elliptic), since the involution of conjugate\points on any line
is elliptic; there are no self-conjugate points, lines, or planes,
and no self-polar lines. In the lattér vase there are still two
alternative possibilities, since “‘th&other seven regions’ consist
of four of one kind and three of andther. In fact, the four faces
of the tetrahedron meet theplane w in a quadrilateral, thereby
dividing the rest of the plane into seven regions (which are

Ry 7
& 6 /
A\ 5 1 4

(N
:"\". 2
Q 3
N 4
N / 7 6 &
Fic. 3.84

sections of the seven regions in space); of these plane regions,
four are three-sided and three four-sided. (See the odd and

*Von Staudt [1}, pp. 190-196,
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even numbers in Fig. 3.84.} According as P lies in one of the
regions whose section is three- or four-sided, three or four of
the six edges of the tetrahedron will contain hyperbolic invo-
lutions of conjugate points, the involutions in the remaining
edges being elliptic. Thus, putting the number of elliptic

involutions first, we may distinguish polarities of types Ko

(6,0}, (3,3), (2,4), O
though it is not yet established that the last two are mutually
exclusive, since we have considered only one self—polar tetra-
hedron. ”‘.\

The analogous symbols for elliptic and hyperbolfc polarities
in two dimensions are (3, 0} and (1, 2), Snioe the polarities
induced in the faces of the tetrahedron mist-each be of one of
these two types, the distribution of lliptic and hyperbolic
involutions is as indicated in Fig. 3.8B; where the edges con-
taining such involutions are dramfn in full and broken lines,
respectively. Thus, in the (3 3} ‘tase, opposite edges contain
unlike involutions, whereas, if*both the other cases opposite
edges contain like involutions.

'
o~ . // \\ I
\X /. \\
/TN

(6.9) 3.9 @ 9

AN Frc. 3.88

\ JIn the (2, 4) case, let 1 and I’ be a pair of opposite edges
containing hyperbolic involutions, with double points A, B and
A’ B, Since I and I’ are polar lines, the polar planes of the
self-conjugate points A and A’ are Al’ and A’l, and the polar
line of AA’ is (AV, A'l)=AA’. Thus a (2, 4) polarity admits
self-polar lines.

N
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Conversely, if a polarity admits a self-polar line and a non-
self-conjugate point (or plane), it is of type (2, 4) with respect
to every self-polar tetrahedron. For, since every non-self-
conjugate plane contains a self-conjugate point {where it
meets the self-polar line), the polarity induced in such a plane
is necessarily hyperbolic; thus every face of any self*polar
tetrahedron is of type (1, 2), and the tetrahedron itsell s of
type (2, 4). It follows that a (2, 4) polarity cannat.Be also a
(3, 3) polarity. Hence "G

. 4%
3.83. If g polarity admiis ¢ self-conjugale po%?z’ and a nown-self-

conjugate point, it is of type (2, 4) or (3, 3)\\dccording as it does
or dees not admit a self-polar line. 77"

We define a guadric as the clagsoiself-conjugate points and .

| planes in such a polarity: in the (2, 4) case, a ruled {or ring-

shaped) quadric; and in the {8, 3) case, an oval {or non-ruled)
quadric. The self-conjugdte points are said to lie on the
quadric, their polar plaﬁ'eE' are cailed tangent planes, the self-
conjugate lines arg{called tangent lines, and, in the (2, 4)
case, the self-p%:e{‘ dines are called generators.

A tangentiline t, whose polar line is t’, meets the guadric
only at its.\’pbiilt of contact (t, t'), whose polar plane is the
tangent, plane tt’. In each tangent plane, the flat pencil of
tangentiines contains an involution of such pairs. In the case
ofythe ruled quadric, this involution is hyperbolic, its double
lines being two generators. Lines which are neither tangents

{_nor generators fall into two categories, according as the invo-

lutions of conjugate points on them are elliptic or hyperbolic:
exterior lines, which do not meet the quadric at all; and secani
lines, which meet it twice.

The properties of an oval quadric are closely analogous to
those of a conic. Such a ¢ adric divides the points of space,
and so also the planes, into three categories, as follows:
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(i) Interior points, through
which no tangents pass;

(ii} Points on the gquadric,
each the centre of a flat
pencil of tangent lines;

{(iii) Exterior points, the tan~
gent lines through each form-

(i) Exterior planes, which do
not meet the quadric;

(ii) Tangent planes, each
containing a flat pencil of
tangent lines;

(iii) Secant planes, each
meeting the quadric ind ‘2’

conic. o N
~\

ing a cone;
3.84. The generaiors of ¢ ruled quadric form @ﬁssocﬁated
reguls. $

Proor. Letaandb betwoskew genel:ajcQ\é of the quadric.
The polar plane of each point A on a megtsbin a point B whose
polar plane is Ab. Since the range of 'points A is projectively
related to the range of points B, their joins form a regulus of
self-polar lines (i.e. generatorss ol the quadric). Similarly,
relating the points on any twowdf these generators, say m and n,
we infer that also the geperzit’ors of the associated regulus be-
long to the quadric. Thége account for all the generators of the
quadric, since the tv déeﬁerators in any tangent plane v, whose
pole (or point of ¢entact) is C, may be described as (Ca, v and

(Cm, ). Q"

Returni~r'1‘§ to the general classification of polarities, we still
have tg\c&féidcr the possibility that ewery point (and every
planp)fﬁ self-conjugate, so that there is no self-polar tetra-
hgd’;‘oﬁ, and the only appropriate type-symbol is (0, 0). Then

“We'have what is known as a null polarity (or null system), and
the class of self-polar lines is called a linear complex. Clearly,
every plane contains a flat pencil of such lines, with its centre
at the pole of the plane; and conversely, a polarity which
admits a flat pencil of self-polar lines can only be a null
polarity.
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The following theorem establishes the existence of such a
polarity *

3.85. The correlation which transforms the vertices of a complete
pentagon ABCDE inio the respective planes EAB, ABC, BCD,\
CDE, DEA is ¢ null polarity.

Proor. The given correlation transforms the plang EAB
into the pomt (DEA, EAB, ABC) =4, and so is the same as its
inverse; i.e., it is a polarity. Each of the lines AB, ‘BC, CD,
DE, EA is self-polar; e.g. DE=(CDE, DEA). T1\1e ‘polar plane
of P=(ABC, DE) is BDE; therefore the ling BP'= (ABC, BDE)
is seff-polar. The flat pencil of lines through B in ABC is trans-
formed into itself according to a pro;el{ fvity with three double
lines: BA, BC, BP. Hence, by the'plane-dual of 2.84, every
line of the . :ncil is self-polar. .

The following summary gvl'\;és" in the customary notation,
the number of points and lmes which play a special role in the
four types of polarity.

N

S
. \’\ I With respect | With respect
Polarity A\ Uniform | to an oval | toaruled Null
.\' quadric quadtic
Typ{e%}vfnbol (6, 0) (3,3) (@, 4) {0, 0)
Self“to Eugate points
237 (or planes) 0 wo? w? o
" Seif-conjugate lines 0 w@? w? 0
Seti-polar lines 0 0 2e01 @’

*Von Staudt {1], p. 194,




CHAPTER IV
HOMOGENEOQUS COORDINATES

4.1. The von Staudt-Hessenberg calculus of pointg.
Projective geometry might well be described as “What we ;:an
do with an ungraduated straight edge or ruler, without
compasses.” It is hoped that Chapters 11 and 111 have shown
what a wealth of elegant theorems can be obtained without
any appeal to measurement. It is one of von Staqdt's greatest
discoveries that even such apparently metricalMiotions as co-
ordinates and cross ratios can be introdueé‘&"non-metdcally.
The following is a brief outline of his me‘plfod, as revised by
Hessenberg,* and a summary of the stzindard results in analy-
tical projective geometry. R\

We saw, in §2.9, that an mvo.lutmn cannot be parabolic.
It is sometimes convenient, jlowever. to extend the meaning
of the word “involution”/so as to admit the relation which
associates every point .or’g\a line with one particular point on
the same line. 'We éall this a degenerate involution. It enables
us to omit the provise (in parentheses) in 2.92,

Let (AA")(BBY) denote the involution determined by the
pairs AA’ and BB’. Then if A>=B, (AM)(BM) is the degen-
erate involution with double point M.

Lets k. P,, P, be any three fixed collinear points, and
X Y; Z variable points on the same line. We define the sum
.X+Y as the point corresponding to Py in (XY)(PoPs), and
the difference Z—Y as the point corresponding to ¥ in
(ZP)(Py,P,). Thus X+Y=Y+X,(Z-Y)+Y¥=Z,X3-P;=X
and if Xs=«P,,, X+P,=P,. Also P;—X is the harmonic

*Von Staudt [2), pp. 15-18, 166-176, 256-283; Hessenberg [1]; Robinson
(1], pp. 90-104.
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conjugate of X with respect to Pyand P,. By means of inci-

dences in a plane,* it is easily proved that

4.11. X+ (Y4+2)=(X+Y)+Z.

Accordingly, if we define P,=P,+P;, P.=P._;+F, aqd

P_.=P,—P., we shall have P,2+P,=P,y, for all integers}

and y. O\

Next, we define the product X-Y as the point corresponding

to P, in (XY)(P,Py), and the guotient Z:Y as the point

corresponding to Y in (ZP,)(FeP,). Thus ‘ R
XY=YX, (ZY)Y=Z, XP=%=XP,
XP,=Py=X:P,, (if X#Py)sand
X:p=P,=XDP, (if X;«é\PR)

The associative law for mu}tipliéétion, namely X (Y-Z)=

{X-Y)-Z, can be proved in the’sar'né manner as the associative

law for addition, 4.11.  But the distributive law can be proved
“in one dimension,” as fqllows.

By the definition gf ﬁ:Y, we have

4.12. | POP.P,Y £ PP, (XY)X,
whence, by 2.&1,\\
4.13, 0 PoPoPY 1 P Py X (XY).

X
This lag.t\i)fojectivity. which is the same for all positions of Y,
transforms the involution (¥ Z) (PP ) into (XY X-Z) (P Pa)-
But'P, is paired with Y+Z in the former involution, and with
XY +X-Z in the latter, Hence
~ J X(Y+Z)=XY+X-Z.
N\ It follows that, if we define P,=P,:P; for all rational
numbers x =n/d, we shall have -
P.4+P,=P.yy, P.-P,=P. ,,
P, -P =P, P,: Py=P,,,.
*Veblen and Young (2], T, pp. 143, 146,
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Such points Py, along with Pq,, are said to form a nef of rasion-
ality in the line.

Let x be any rational number other than 0. Since Psyy=
P.+P,, P, is the point corresponding to Py in (P,P,) (PuPwx); »
hence H(P,,P,, PiPs,), and P Pe [| PeP:.. We can now proye
by induction that O\

P P, “ PP ';\ ’

for all integers m>> 1. For, by the definition of x—i-(Y;’;, ’

PP XY 5 Po R+VYX. (O _

In particular, Po PoP:Pim—12 A P, P,,.,P(,,,__l,',l’;. Hence the
separation P, Pa|| PoPm—1 s implies Pmlf(..,}.;‘),l | Pme Pz, which
(by 2.123 and 2.125) implies P Ps || PéPs-

Thus the points Ps, Psz, Pazy . . .pegur in order in one of the
two segments Py P,. Replacing ;:by _ x, we see that the same
holds for P_z, P_ss, P_ss, - . . . \Moreover, these lie in the other
segment Py P, since H(PUP:%;,'P,P_,). Hence all the points

oo\ Poyy Pag Py, Po, Py Pugy o -1 P
occur in order. In other words, if m and n are any integers,
while disa positiv&'( teger, we have S(PusPasP o) =S(PiPaP o)
if and only if m &g, Writing 1/d for x, and observing that any
two rational @ifnbers can be expressed as m/d and n/d (in
terms of @, common denominator™), we deduce that

Q" S(Pa Py Pe) =S(Po Pt Poo)

if agd'only if a <b. Hence*

»\4\14 The order of the points P, of ¢ net of rationalily agrees
N with the order of the rational numbers x.

The step from a net of rationality to the whole line is made
by means of Axiom 2.13. Lety be any real number, which we
first suppose to be positive. We divide all the points of the

*Veblen and Young {1}, p. 368.
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“positive” segment Py P, /P_, into two sets: (i) all points
which lie between P; and every “rational” point P. with x>y,
and (ii) the rest of the segment. The point determined by this
dichotomy is denoted by P,. For a negative y, we treat the

“negative’’ segment Py, P, /P, similarly. Thus \

4.15. There is a definite point for every real number, the @i&er
of the poinis agreeing with the order of the numbers. ’ O

Conversely, every point of the line can be 50/ timbered.
For, any point divides the numbered points, aagh thence the
real numbers, into two sets, to which we cat¥apply the arith-
metical axiom of Dedekind. The real m{nber x is called the
abseisse of the point P,. 2

2%
W

4.2. One-dimensionalprojectivitiés. Since P,..=P,—P,,
the above definition for the différence of two points may be
expressed in the form AN\

Po PPy Py Py, PoPo Py
Replacing x by —x, andapplying theinvolution (PyPy)(Ps, Py),
we deduce that )

PoP_,PiP, ; PoP,P, P, ...
Considering Pyas'a variable point, we thus see that the trans-
formation A"

"\n ’_
4.21. e ¥=ag+x

deﬁl}@i“brojectivity between points P, and P,..
By 4.12 and 4.13, we have
N\

© P,.P,P,P, Z PoPy, Py Py
N\ and P,P,P, P, A Po PP P,
Thus the transformations
4.22. ' =1/x,
4.23. x'=ax (a»<0)

define two further projectivities.
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It follows that the combined transformation
. v _{Bst+y)x+(B+BEetye)
424 w=FT ot 5 (L F3¢) (v740)
+ —

é-fx
likewise defines a projectivity. Moreover, the values @, 0, 1,
for x give for «’ the values §+v/5, B+v/(8-+1/¢), ,8+'y/{ 3+
1/(e+1)}, which may be arbitrarily assigned, provided they
are distinct. Hence, by 2.85, O ’

The general one-dimensional projectivity is given by the linear
fractional transformation D

N\
4.25, & =(px+q)/(re+s) (ps=gr>£0)
or by the bilinear relation N
4,26, axx’ Fhx+ex' +d=0 ~\ad—bc#0).

By observing their effect on thg:pbints P, P, P, we see
that the projectivities 4.21 ang.l'j‘i:22 are direct and opposite,
respectively, while 4.23 is dinjéci"or opposite according as a is
positive or negative, Henced.24, 4.25, and 4.26 are direct or
opposite according to thesign of

e
N\ =ps—qr=ad— bc.
By considegifng the discriminant of the quadratic equation
O\ e+ (b+e)x+d=0,
we see thai;%ne projectivity 4.26 is elliptic, parabolic, or hyper-
bolic a&érding as ad — be is greater than, equal to, or less than
1(8%c)®. The projectivity is an involution if it is symmetrical
...s\j.ri%h respect to x and «’, i.e. if b=¢. (Cf. 2.88 and 2.96.)

' Any involution can be expressed in the form xx’ 42 =0, by
assigning the symbols P, and P, to one of its pairs. For any
non-vanishing number ¢, we can change the notation by assign-
ing the symbol P, to the point previously called P.,. The given
involution then becomes c?xx’ +d4 =0. Finally, taking ¢ =+/|d},
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Any elliptic or hyperbolic involution can be expressed in the
“canonical form”
4.27. xx'+1=0,

The hyperbolic involution xx’—1=0 has double points

P.,. More generally, for any unequal finite numbers s andai
(P, PYP:P)is

4.28. xx' — s+ (x+x") +st=0; R
for, this relation becomes (x—s)(x—1#) =0 when we! pii[ x'=x.
On the other hand, (P,P}(P.Ps) is o~

4.29. x+x' =2s. \‘

4.3. Coordinates in one and two dimensions. The sum,
difference, product, and quotient of goints (§4.1) depends on
our choice of Py, P;, Po,. The transtrmatmn 4.25 enables us
to get rid of this particular ch,mce“ by using the symboi Pz to
denote the point previousty J'fai}ed P,

The interpretation of 4.25 when x = o requires a little care.
Such difficulties are ayoided if we replace the abscissae x by
pairs of komogemous\coordmates %o, %1, Such that xi/xs=2x.
Then if 20320, { x»;) denotes the point P, ,,,, but (0, 1) de-
notes P,.. Thus every ordered pair of real numbers, not both
zero, defines’ a'point on the line, but each point is equalty well
defined by every pair {pxo, px1), where p70; hence “‘homo-
geneouss” In particular, the harmonic conjugate of {x,, %1)
WLtQ(espect to (1, 0) and (0, 1) is (—xp, %1} or (%o, —%1)-

\'By the fundamental theorem 2.85, any three collinear
\pomts are projectively related to any other three collinear

\ Y points. But the case of four collinear points is different, as
some tetrads are harmonic while others are not. Accordingly,
we seek a number which will distinguish a given tetrad from
all unrelated tetrads.

For any four collinear points P,, P, P,, P, not necessarily
distinct, we define the cross ratio
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431. {P,P, P,P}= (x=2a)(y—1) _ (180 ~%o81) (yato — Yobs)} |
(x—{y—2) (ato—=ot1)(y120 - Yo21)
The former expression (in terms of abscissae) is convenient to
use when the point Pe, is not involved. The cross ratio is
clearty unchanged by each of the transformations 4.21, 4.22,
4.23, and is therefore a projective invariant. In other words,
the relation ABCD % A’B'C'D is equivalent to the equatiofi
{AB,CD} = {A'B’, C'D'}. But thereis no projective invatfant
depending on fewer than four points. (The simple ratio
AC/BC, which occurs in affine geometry, has‘\'(lb' place in
the present theory, though it can actually bevderived from
{AR, CD} by calling D the “point at inﬁr@;y.")
Clearly \
{AB, CD} = {BA, DC} = {CDyAB} = {DC, BA},
in agreement with 2.81. In partigular,
{AB, AD} ={BA, DA} =0,
{AA, CDJ\= {CD, AA} =1,
{AB.\CJ'A} = {BA, AC} =w.

Also )

432. {AB,DC} Z[AB,CD}~% {AC,BD}~1-[AB,CD}.
Another usdu\% formula is

4.33. '.\3:’ {P,P,, PoPo} =2/7.

which shdws that the relation H(AB, CD) is equivalent to
{AB(CD } = 1. By 4.33 again, we have

L3V (PP, PPy} {P.Ps PoPo,} {P.P,, PiPo} =1

\Phus, for any five points A, B, C, 1, X, on a line or conic,

4.34. {BC, IX} [CA,IX} {AB,IX} =1

By 3.12, any four coplanar points, no three collinear, are
related (by a collineation) to any other such set of four points.
On the other hand, each of five coplanar points is joined to the
remaining four by lines which havea definite cross ratio. We
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proceed to use three of these five cross ratios to determine a
point X with reference to a quadrangle ABCI in the simplest
Applying 4.34 to the conic ABCIX. we infer

possible way.
the existence of real numbers xo, %1, %2, such that
X x N\
{BC, 1%} =2 (cA,IX} =2, (AB,IX] = —.
X2 Xo X1 ’.\:\

. '\
These, or any numbers proportioual to them (notall zero),
are called the caordinai¢s of X with respect to tie friangle of
reference ABC and the unit pointl, and the 'poinl;,Xié denoted by
(x4, %1, 22). To make this definition significatt, we must stipu-
late that the unit point (1, 1, 1) shall not{i@ on any side of the

2%

triangle, &
Pb N\ ":2\ CP
{
]f
o3 P
a7 i
P A !
!
I B
P, P
|
. ] )
X i Xy
!
XF
- oG
. B AX,
o3 F1c, 4.34 Fic, 4.3

AN
\'“\; + Each of the above cross ratios may be interpreted as apply-
ing to the four lines obtained by joining the four points men-
tioned to the remaining one of A, B, C, 1, X, as in Fig. 4.3,
Thus, if X lies on BC, we have [CA, IX} = « and {AB,IX}
= 0, so the line BC has the equation x, = 0. Similarly

CA and AB have equations x; = 0 and xy= 0; therefore A is
(1,0, 0).
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Similarly B and C are (0,1, 0) and (0, 0, 1). Itisimportant to
notice that the point (%o, %1, 0} on AB has one-dimensional
coordinates %o, £1, referred to Py=A, P, =B, P1=1.. Theline
Jommg C to {¥0, 1, 0) evidently has the equation 1/%e=31/%0
or ¥iXo —yuxl—O .

To see that a line not through any vertex of the tna.ngle~
has likewise a linear equation, consider such a line p (as\m~
Fig. 3.28) and let P = (po, p1, po} be its trilinear pole.In
other words, defining P, and P, so that H(P,B;, “CA) and
H(P.C,, AB), let P be the point where BP, meets CP.. (See
Fig. 4.3.) Then, for any point X on p, we lave’

B C \
CB,AX, = A, chpxﬁmpp&v
Since the points X3, X, B, C; are re;.p«é:o\t‘lveiy
(xO: 0| x!)t (x{h X1, 0): ('_90;‘01 fiﬁ)u (PU! —Ph 0):
we easily calculate the cross ratjds N

(CB, A Xy} =1+2%23% (B, C, X} =2

Xifa Xof

Hence the line p has the\equatlon
\\x" + + o
N\ J P e
Thus ever)‘r\pomt, and hkemse every line, is represented
by an ordqr\:( set of three real numbers: a point by its co-
ordinatds\er ‘point coordinates”) x,, x1, ¢, and 2 line by its
tangeﬂtwl coordinates (or “line coordinates”) X, X1 Xa
whlch are the coefficients of %o, %1, %2 in its equation. Any three
rgal numbers, not all zero, are the coordinates of a definite
Yoint, and of a definite line; but the same point (%o, %1, ¥2) or
line [ Xq, X, X]is represented when the three coordinates are

all multiplied by the same non-vanishing number.
If (xo, 21, xs) is the trilinear pole of [ Xo, X1, X4}, we have
2o Xo=x3 X1=22 X2

=0,
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On the other hand, the condition for (xo, %1, x2) and
[ Xo X1, X3] to be sncident is

ano+x1X1+x3X2=0.

The expression on the left is conveniently abbreviated to fxX},
and we say that the condition for the point (x) and line [ X{J$0
be incident is [xX} =0. If we regard [ X] as a fixed lide)dand
(x) as a variable point, this relation is the equation of ‘the Tine,
being the condition satisfied by all points whicly lic on it.
Dually, if we regard (x) as a fixed point and [XI as’a variable
line, the same relation is the tangential equafien of the point,
being the condition satisfied by all lines which pass through it.
Thus the coordinates of a point are the gefficientsof Xo, Xy, X2
in its tangential equation. In partic(fla¥, the vertices (1,0, 0),
(0, 1, 0), (0, 0, 1) of the triangle’ef-teference have equations
X,=0{(x=0,1,2). Duaily, thé sides, having equations x, =0,
are (1, 0, 0], [0, 1, 0], [0, 0, 1}

To find the conditiqn?fo’r three points (x), (¥), (3) to be
collinear, we eliminate X, X; Xa: between the equations

{xX} =0, [yX} qu;:{zX} =0, obtaining
\\ - Xy X1 Xa
: Yo Y1 Y2 = 0.
2O 3 #1 f2
Thus ,gh:éline joining (y) and (z) is
(%" fvize—vez1, VoZo— Vo3 3’021—'3’1501-

Dually, the condition for three lines { X], [¥], [Z] to be con-

'\ .
s\ current 15
) 3

Xo X1 X»
Yo Y; Yz = 0,
Zo Zi &

and the point of intersection of [¥] and [Z] is
(ViZs— YaZ1, YoZo— YoZs, YoZi—Y1Z0).
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It is easily seen that any point collinear with {y} and (z)} may
be expressed in the form

(myo+nzo, my1H031, My +n2s),
or hriefly (my-+mng), and that its harmonic conjugate with
respect to (y) and (z) is (my —nz).

The triangle of reference divides the plane into four regiofs),
(§2.6), any cne of which may be chosen as the inferior region”
by taking the unit point in that reglon (The fact that we
intuitively designate a particular region of a triangle as interior
serves to emphasize the difference between projeétwe and
Euclidean geometry.) In the interior region all three coordi-
nates of a point have the same sign, bug.'Qthe other three
regions one coordinate differs in sign from’ the other two.
The same distinction can be made Jas\to the signs of the
tangential coordinates of a line. If\X% X1 Xaare all of the
sarme sign, and [xX } =0, then &4;%1, %z are certainly not all
of the same sign. Hence the Li;ieé"whose coordinates are all of
the same sign are evierior, to“the triangle of reference. The
trilinear pole of an extog@r line ig an interior point.

44, Coliineatiofig\and coordinate transformations. Be-
fore considering thieygeneral collineation, let us take an impor-
tant special cdged ' the harmonic khomology (§3.1) with centre
(#) and axis W Let (£) be the point where the line joining
any poi (3\9} to (u) meets [U). Since (x) is collinear with (&)
and (i&%&e may write

x, =mi,+nu,

\and the harmonic homologue is (x") where

x,_‘ =mi, —ni, =%, 2nu,,
But, since (£} lies on {U],

{xU} =m{tU} +nfalU} =n{aU}.
Hence the harmonic homology is given by °
4.41. v, =x,—2u,{xU}/{uU}.
8
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In terms of homogeneous coordinates, the one-dimensional
projectivity 4.25 takes the form

x; _ P+ o

= _ (ps—gr#0)
x, T+ 5% N
!
or px g =CooXotCor%1, A\
f 4
pxy =cwXotenx (000611—61wf#h).
Analogously in two dimensions, A\
S %

4.42. The general collineation is given by the ljizQé:if !rénsfarma-
ton W
!
Pxn=cnoxu+‘:u1x1+‘7;{a{g~ _ (=0, 1, 2),
the coefficienis being any nine real naibers whose determinant

Cop  Coi > Co2

= | cip X1 Cr2
L300 21 Co2
is nol zero. N\

PROOF. Wher}eVEr there is no danger of confusion, the
factor of proportienality p will be omitted or “absorbed.”
Since v#0, weaan solve the equations

A</
:'\'.w‘ CpnXot ¥t €u s =x:, (u=0,1 2),
obt&ﬁihig x,=Cyzit Cpxit Copy (v=0, 1, 2},

‘w’liere the numbers C,, are proportional to the co-factors of €u
M\I"ﬁﬁ the determinant y. Hence the transformation is a point-
\\ ) to-point correspondence; and since any linear function of the
x, is a linear function of the x;, this correspondence ig a col-
lineation. Conversely, every collineation is expressible in this
form. For, in order to transform the four particular points

4.43. (1,0,0), (0,1,0), (0,0,1), (1,1, 1)
into the four general points
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4‘44' (xl]l" xl#’ le) ("':07 1) 21 3)'

we merely have to take ¢, =x,,w,, where w,, w,, w, are given
by the simultaneous equations

XoWot X, W tx,,w,=x,; (e=0,1,2),. 2\
which have a non-vanishing solution provided no three of the,
four points 4.44 are collinear. Thus any matrix (c,,) for which)
30 determines a collineation, and conversely the collingdtion
determines the matrix (apart from a scalar factor).“:”:'«.

The above proof shows also that («') is the point whose
coordinates are x, when referred to the triangl€ aad unit point
4.44 instead of 4.43. Thus the transformatienyplays a double
role: it can be regarded either as a colli édtion which relates
one point to another, or as a trensféfpintion of coordinates,
enabling us to use a new triangle of ,}*éférence and unit point.*

It is convenient to borrow from tensor calculus the con-
vention whereby any lerm inaé{ﬁéﬁg a repeated suffix is under-
stood to be summed for the possible values of thal suffix (in the
present case, the valuegQ‘, 1, 2). In this notation the trans-
formation 4.42 takes {he’form

a\

4.45. \, x; =C,.%, (=0, 1, 2)
or ) ,\ ;-
4.46. O %,=C, %, (»=0,1, 2).

The cortaegtion between these two equations becomes clearer
when we'nse the “Kronecker delta” 8,,, which is equal to 1 or
0 ga.qecifding as the two suffixes are the same or different. In
fapt, if we define C,, so that the co-factor of ¢, in ¥ is preciscly
\yCu,, the theory of determinants shows that
CAnC,w =8 .

Hence 4.46 implies c}\,x,,=c,\,C,‘,x;=6Mx;=x;, which is 4.45;
and simitarly 4.45 implies 4.46.

*Méhbius [1], p. 304
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The corresponding transformation of tangential coordinates
must be such that the incidence-condition {xX } =0 is equi-
valent to {x'X '} =0. Disregarding a factor of proportion-
ality, we equate these expressions, obtaining

x,X,=x:‘X:.=c#,x,X:.. ~
Since this must hold for every point (x}, we equate coefficients

of x,, and find <\
447, X, =¢ X, (=0, 1, 2).
Similarly, since %, X, =%, X,= C”,x; X,, we have' N '
4.48. Xi=C,X, ALY (w=0,1,2).

B",";:’ b C

1 Fic. 4.4a
\

The advan gfe of being able to transform the cocrdinates
to any triangle of reference is well iflustrated by the f ollowing
self-dual\definiition of cross ratio. Let A, B, a, b, or (%), (v},
{ X], { &} -be any two points and two lines in one plane. (See
Fi&'ﬁ&}h.) Defining their cross ratio by the formula*

"\

T

fxv}{y X}
we observe that this expression does not depend on the arbi-
trary factors in the coordinates of the points and lines, nor ont
the choice of the coordinate system. Accordingly, We may
supposc the triangle of reference to be formed by the lines
b, a, AB, so that [X]is [0, 1, 0}, {¥]is {1, 0, 0], and

*Heffter and Koehler [1], I, pp. 120, 136.
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‘IAB, ab } =:I’-'1}'o/xoy1.

Deﬁoting by A’ and B’ the points where & and b meet AB, we
see that this agrees with the value of {AB, A’B’} as given by
4.33. :

4.5. Polarities. Since the product of any two correlations,,
is a collineation, and the inverse of a correlation is a correla-’)
tion, we see that every correlation can be regarded as {the
product of any particular correlation and a suitable collifiea-
tion. The simplest particular correlation is clearly thét which
relates each point (x) to the line {x]. (Incidental‘l?, this also
relates the line [ X] to the point (X), and sojis*a polarity.)
We have seen that the general collineation is%i\ren by

x:,=c,,,x,, X:,=C,;’X,“ (x=0,1, 2),
%,=C, %y, X, =) X, (»=0,1, 2).
Hence ,,’:l
4.51. The general correlation jsrg'ﬁwn by
Xp=tuty, N6, =C, X,  (#=0,1,2),
5=C.&  X=a.x (»=0, 1, 2).

Interchanging x a\ndx’, X‘and X', p and », we find that,

in the imverse correlation, X, =c,x, The correlation is a
polarity if it is tHe same as its inverse, i.e. if ¢, =me,. Since
this implies gy mc,,, we musthavem?*=1. Butm=— 1 would
imply | (\¥
'\’\\“ 0 fox —Cm

\ \ Y= —&o 0 ez | =0.
O Ci —C1g 0

By

/N
s D .
NTherefore m =1, and ¢,, =¢,,- Moreover, no confusion can now
be caused by writing x for ' and X for X’. Hence

4.32. The general polarity is given by
X.ll=6mxr! xn=CﬂDXv (J-‘:Uv 1, 2)t
where cwl = " and C}svcpw = 5}-#'
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This last condition implies that the co-factor of ¢,, in the
determinant y =det (c,,) is ¥C,,, that the co-factor of C,, in
T =det (C,,) is T¢,,, and that 4T'=1.  Clearly, the condition
for points (x) and {y) to be conjugate is

£ %, 3. =0,
and the condition for lines [ X] and [¥] to be conjugate is
C,X,Y,=0. N

7NN “
By transforming to a self-polar triangle of referencejwe ob-

tain the polarity in a remarkably simple form. ,I'ﬂ‘i‘éﬁt, since
each pair of vertices is now a pair of conjugate points, we
have c1a =¢20=co1 =0, and the polarity is gi¥ecn by

4.53. Xo=coo%o, X1=cuxi, X3z=on¥s

where coociicpe70. Since the order“ﬁl’nwhich the new co-
ordinates are numbered 0, 1, 2 is arbitrary, and since the
polarity is not altered when the coefficients are all multiplied
by the same constant (which{n‘iéy be negative), there is no
loss of generality in assuming'that ¢y, and ¢a; are positive.

A “change of scale,”’ which preserves the triangle of refer-
ence while changing the' unit point, is achieved by writing
xo/ o, xl/ﬁh xz/C t)xo, Xy, %2, and ¢ Xo, @ X1, c2Xe for
Xo, X1, Xi. The'relations 4.563 then become

e’ Xo=coo %0, X1 =cn %1, €2 Xp=62 %2
Taking co ::\\/kaul, cL=A/c1, €a=+/cz, we thus reduce the
polarity.to'its canonical form

4.54\4%" Xo= x4, Xi1=x1, Xo=uxu
«Since this relates the interior point (1, 1, 1) to the exterior
~ gr interior line [£1, 1, 1], the polarity is elliptic or hyperbolic
S\ according as the upper or lower sign is taken. In 4.52, the
condition for the point {x) to be self-conjugate is ¢,%.%, =0
hence the polarity is elliptic or hyperbolic according as ¢,%,%,
is a definite or indefinite quadratic form, i.e. according as the
three numbers Cyg, €11, v are or are not all of the same sign.*

*Veblen and Young [2], I, p, 205.
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In the hyperbolic case, the lacus of self-conjugate points,
and the envelope of self-conjugate lines, is the conic

4.55, %%, =0, C, X, X,=0,
or, in canonical form,
4.56. —x02+x12+x23=0, - Xaz"l" X12+ Xg =

The line {1, 0, 0] or x, =0 does not meet the conic4.56. Hence,
by considerations of continuity, all lines [ X] for which ¢/}
— X+ X+ X2 <0 O

are exterior to this conic, while those for which “} N

— X2+ X224 X220 M\
are secants. Applying the polarity 4.54, we dednice that the
point {x) is interior or exterior according a§\~xo”+x12+xs is

negative or positive. ,,\

4.6. Coordinates in three dimeps’i:u!is. The above results
are easily extended to three-dimengional space.* The point {x)
now has a fourth coordinate xg,‘a&d the tangentia} coordinates
[X]or [ X, X1, X2 Xl représent a plane. The condition for
the point (x) and plane{[\X] to be incident is {xX} =0 or
x, X, =0, which now méa\as

xg X1 X 1422 Xats Xo==0.
This can be mterf;)rﬂted either as the ordinary equation of a
fixed plane [ X]{or as the tangential equation of a fixed point
(). In partlcular, the tetrakedron of reference has faces x,=0
(p=0, 1\2 3) and vertices X,.=0.

Siﬁ& the relations x, X, =,X,=0imply (mz,+2y,) X,=0,

evary ‘plane through (x) and {y) contains the point

™ (oo +nye, mxr-+ny1, mEs-t-nys, maz+nya),

or briefly (mx+ny). This point is therefore collinear with (x)
and (y). The plane through three non-coliinear points (x),
(5), () is [ X], where

*[nstead of the conjc ABCIX we now use the twisted cubic ABCDIX,
Ci. Robinson 1], pp. 104-106; Pliicker [1], [2]. ’
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X1 X2 X3 Xy Xz X
Xo=|3 22 v, Xi=— | 3 3/,
21 £ Zg 3 Zz %y
Xp X1 X2 Xg X1 X
X; = Yo ¥y1 Yal|, Xs=— v 1 |- O
Zy %1 23 Ze %1 22

O\
The point of intersection of three planes is given by the sdme
formulae with small and capital letters in terchangedy

Pliicker’s coordinates for a lne are dcﬁneﬁ by closely

analogous formulae: ) o\
The line joining points (x) The line ,of' intersection of
and {y) is {p} or planf:\s';[} ] and [¥]is
“’01' Pozs Poar Paa, Pan, Pml}, LR%EPSh Piy, Poy, Pos, Pl33]r
where a,’{'dwhere
x, x, ,:}fé X, X

P‘" B y;-l yv ’r." P'W o Y Yv I

s0 that ...“ so that
P ?,uv{ 3 Py,;=_Ppr-

and puu—p11—922¥933=0 and Pog= Py = Py, = Pry =0.

In ordey, W 1dent1fy these two sets of six coordinates, we
observe thqt if both the points (x) and {¥) lie in both the planes
[X] ;Qd\m sothat {x X} ={y X} ={x¥} = [y ¥} =0, then
rBi= (63, —3n%) (X, V,— 7, X,)

O maXuY-ay, (3 X} =3 X, {27} 40 Vi X} =0.
V If A#y, two of the four terms implied by the expression Py, Py

vanish identically. We thus have twelve relations such as
P01 P31+ poaPs =0, which are equivalent to

Py _ Py _Piw_ Py Py Po

Por P2 Pz Pa Pm Pz



§4.6 PLUCKER'S LINE COORDINATES 89

Since the p,, and P, are homogeneous coordinates, we may
write simply
Py =po1, Par=poz, P12=pos,
Po=bas, Poz=ps1, Poe=t1s.

To find the condition which six numbers poi, Poz. Pos, Pass
ps1, P12 must satisfy in order to be the coordinates of a line, wé™),
put A=p=0in the relation $,, P, =0, obtaining o, Py, =P0r

4,62. fo1P +P02P31+P93P12=0- K N\

To find the condition for two lines {p} and {#}to inter-
sect,* let {x) and (y) be two points on the formeg, [X] and [ ¥]
two planes through the latter, so that RS

P =3~ Y80 XY, —,,%‘i’,)
=2{x X} {y7} —2p¥} {y X}.
If the lines intersect at (x), we haye {xX}= fx¥} =0, and
therefore pn,P;, =0. Conversgly; if this relation holds, there
are numbers m and #, not both Zero, such that
iz X} mnlp), nly¥)=m{=7},
i.e. (mxp—ﬂyﬂai}i}*-"o. (mx, —ny,) ¥,=0.
Then the point (mg:\)zy) fies in both planes { X] and [¥], and
0 is a common.point of the two lines. Thus the necessary
and sufficient’edrdition is
4.63. {')-si'f’}:’:"i‘ﬁuzf?;.l +PosP;2+P23P;1 +?31P32+P12P33 =0.
Tp\&d conditions for the line [p] toliein the plane [ X1, let
[p'}jbc given as the join of points {x) and (y), so that, for any
.»quﬁé [ X],
/ b X, = (5,5, —3,) X, =,y X}~ {eX}-
Then the four relations
4.64. P#,X,=0 (H=0| 11 2! 3)
hold whenever [ X] passes through {p}. For each value of g,

4.61.

*Cartan [1], p. 120
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the relation 4.64, being linear in the X,, is the tangential
equation of a point, viz. the point {x,¥—v,x), collinear with
(x) and (y). Since there is no term in X, this is the point
in which the line meets the plane x,= 0. Thus any tw

of the four conditions 4.64 are sufficient to make {p} lic in [X]}
The dual argument shows that any two of the four rela{}pns
4.65. : . Px,=0 (e=0,3,2,3)
(which are the equations of the planes joining thé line to the

points X, ==0) are necessary and sufficient con@itmns for the
line {$} to pass through the point (x).

4.7. Three-dimensional projecti "‘\e\s' The results of
$4.4 continue to hold in three diwansions if we make the
obvious changes, replacing lines by blanes, triangles by tetra-
hedra, and extending the range'of the suffixes to 0, 1, 2, 3.
Thus a linear transformatisdef coordinates will enable us to
take the tetrahedron of reference (and the unit point) in any
convenient position. (For any two points and two planes

A, B, ¢, 8, or (x), (3{7\[*)(}, [¥), we define the cross ratio*
a7, N \\{ AB, ag) = 12X} DY}
NS fx¥}{yX}

The convement tetrahedron of reference is formed by 8, a, and
any ‘Q\n@'}Jlanes through AB. Then [X]is [0, 1, 0,0}, { ¥V]is

(L, 0:8,0], and
N\ {AB, a8} =x1y0/x1y, = {AB, A'B'},
\A’ and B’ being the points where & and 8 meet AB,
The general collineation is given by
Ye=Cu%, X,=C,X, (#=0,1,2,3),
x, =Cxy, X,=c, X, (v=0,1,2,3).
Combining this with the special polarity which relates the
*Heffter and Koehler f1), 11, pp. 78, 95.

3
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point (x) to the plane [«], and the plane [ X] to the point { X),
we obtain the general correlation
Xi=cy %, x=C,X, (u=0,1,223),
%=C,X,, X,=c,x, (»=0,1,2,3).,
The condition for this to be a polarity is again ¢,, =mc,,, where:
m == =x1; but now both values of # are available. Hence: )
7"\

N

4.72. The general polarity is given by
Xy =G,plr xr! xﬂ :Cp:r Xr gnu“:; 0! 1! 2! 3)!
where ¢,,=kc, and 6,C,, =5, N

The implications of this last condition,are the same as in
the case of 4.52, save that now the detert }nants v and I each
have four rows and columns instead éf)th

When ¢,, =c,,, so that the determmants are symmetric, we
have an ordmary polarity, which admits non-self-conjugate
points. By referring the cooramates to a self-polar tetra-
hedron,* we can reduce this\to the canomnical form

Xg =toXo, X}\ C1X1, Xz =Caka, Xs =C3%3.
(A proper choice f\the unit point would enable us to put
==1; but it i3 c%vement to postpone this last step.) The
condmon for & point (x) to be seIf—con]ugate is now ¢,x,2 =0.
Hence the, o}arlty is umniform, i.e. of type (6, 0), if the ¢, all
have the»same sign.

If le {p} joins points (x) and (3), its polar line is the

mtarsectmn of the polar planes
~ \ " [eoxq, cixy, coxa, csxs] and [eo¥o, c1¥1, €2 C3¥sl,
Nlamely

473, {catspes, Cocrpa, Cicapis, Coc1par, CoCaoz, cocabos) -
In particular, the polar line of { p} in the uniform polarity
X,=x,is [P}, or

*Veblen and Young [2], 11, p. 263.
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4.74, { P20, D1, P, by, Pos, pos).

A fine {p} is self-polar if it is the same as 4.73, i.e. if

CaCafas = Sitipn o Cicapra _ Cecipor _ Cotapos — CoCapos =, -

b Poa Doa P2 P P2 XN
where mt=coc1coe,.  This cannot happen if one of the ¢, cjiﬁfﬁgs
in sign from the other three, but it can if two differ in sign¥rom
the other two, Hence, by 3.83, these distributions of sigh give
Polarities of types (3, 8) and (2, 4), respectively. In'particular,
the quadric R4

— %ot kx 2y g2 =0, ~ X+ X2 KA X2=0

is oval or ruled according as the upper or {Qwer sign is taken.

On the other hand, when Con= =L, "80 that the deter-
minants are skew-symmetric, we havea nyi] polarity, For,
since Oy

Gty = 6,25, =} (et ¢, Y x, =0,

eVery point in space is self~c;{5ﬁ}ugate. Two distinct points,
{x) and (), are conjugate ifif,, x5, =0, Since this relation is
equivalent to XY, By, =0 or %y, —2,,) =0, the
condition for a line {4 o join two conjugate points is
4.75. \\ : Cobur =0,

- But the join of two conjugate points, being the line of inter-
section of thei}: polar planes, is self-polaf. Hence 4.75 is the
equation ofa-7ineay complex,

ey, =—c,, we easily verify that

QO ¥ = {01623+ concay + €03 C1a)?,
Thitsif 501623+602631+6056u =0, the lines which satisfy 4.75 are
~Jot the self-polar lines in polarity. Instead, they are all
Nothe lines that meet the particular line {czs, €31, €12, Co1, Cag, Cas}e
They form what is called a special linear complex.
two linear complexes, say b,,p,, =0
wlu =0, are said to form a lineqy congruence. Clearly,

)P =0, for all
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This is a special linear complex if # satisfies the quadratic
equation

(Boart+ca1) (Basm -+-cas) + (Boatt +cos) (Berm+c51)
+{bazn+cos) (bra1 +c10) =0.

If the roots are real and distinct, they provide two lines .

g”baa +cas, nba1tca1, nbiatcas, P '\“.\
" mbaytcoy; #hostcoa, nbes 42603},

calied directrices, and the congruence consists of &H‘ lines which
meet these two. If the directrices are skew”ﬁhé congruence
is said to be hyperbolic, in contrast with theeliplic congruence®
for which the above quadratic equation ha$no real root. By
solving the equations 8,,p,, =l =0 along with three of the
equations 4.65, we obtain a definite line of the congruence
through a given point (x) of generalgosition. Fora hyperbolic
congruence, this line is simplyjfhé transversal from (x) to the
two directrices, and so is noJonger definite when (x) lies on
either of the directrices. “But an elliptic congruence has no
directrices, and in t{a"t case the line is definite for every
poing (x),
&

4.8. Line coordinates for the generators of a quadric.
Consider tl;eﬁ:lhadric 6x =0, If cocacaes> 0, we can simplify
4.73 by thefollowing device, due to P. W. Wood. M ultiplying
the ¢; ’;z\';‘:he constant (co/cic2¢5)}, and changing the notation
so‘a,‘s'}.’o call the new coefficients ¢, again, we obtain the same

guadric in a “normalized” form, with ¢s=cics¢5. Then the
“\polar line of {p} is
\ 3

{Pﬂs/ch psi/cn Prz/es, Crpu, Capos, Cs?us}-

If one of ¢y, ¢,, ¢, differs in sign from the other two, the
quadric is ruled. If, further,

——

*Veblen and Young {2], I, p. 315.
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4.81. Pu=ti1po1, Ps1=capys, Pre=cypog,

the line {p} is self-polar. Thus a typical generator of ope
regulus of the quadric

C102Ca%0* + L1212+ £a% 52 - oyt = N
is {Ph D1 P, Lrpy, Cape, Cafry 2’ 1 ) '\:\
where, by 4.62, O

P’ Feapa+egps? =0, , ‘ 3
A typical generator of the other regulus is ob‘gaiﬁed hy rever-
sing the signs of ¢, ¢, £3. .“’z\\

4.9. Complex projective geometrys VAn alternative pro-
cedure (of great theoretical importange,“since it identifies the
consistency of the axioms with the. xconsistency of the real
number field) is to define a pointas‘an ordered set of four real
numbers, 2 line as an ordered $et of six real numbers satisfying
4.62, and soon. {See p. 259 Then every axiom about points
and lines is replaced by &theorem about numbers, and most
of these theorems are quite easy to prove.

Two possible €neralizations immediately present them-
selves. First, intéad of Sour numbers, we may take n+41, so
as to obtain sdimensional geometry.*  Secondly, instead of
real numbess{ e may take elements of any field, e.g. the field
of complexnumbers. } Defining a projectivity as a linear
transferntation, we find, in this last case, that every polarity

’;\eﬁf-conjugate points, and that every quadric has gen-
q;a.’tors. :

~  Axiomatically, complex geometry is derived from real
\\ ) geometry by denying 2.124, while retaining al] the other axioms

4

*Scheute 1], np. 187-
tCartan [1).
{Veblen and Young [2]

219; Sommeryille 13], pp. 59-72,

11, p. 30: "Assumption 1.7 See also Young [1].



CHAPTER V
ELLIPTIC GEOMETRY IN ONE DIMENSION

5.1. Elliptic geometry in general. As we saw in §LT)\
Klein’s elliptic geometry is a metrical geometry in whlch two”
coplanar lines always have a single point of mtersectlon, One
method of approaching this geometry is to mtroduce an un-
defined relation of congruence, satisfying certain. asmms such
as the following:

5.11. From any poini D on a given h'ne',,@:can lov off twe
segments, CD and DE, each congruen: to, @ glven segmeni AB,
We can then develop a chain of propositichs similar to Euclid I,
1-15, and conclude* that all Iines.g’r’e: finite and equai. A line
being finite, any two points defekmine two “‘supplementary”™.
segments. If these are equalyeach is a “right” segment, and
the two points are said torbe “conjugate.”” All the lines per-
pendicular to a given Eﬁa}ﬁe are found to concur at a definite
point, conjugate to évery point in the plane. Conversely, the
locus of points copjugate to a given point is a plane. There is
thus a definite édrfespondence between points and planes, of
the kind that\ghas called a uniform polarity in §3.8.
This_bridgs us to the altérnative treatment which is fol-
lowed is \the present book. Observing that every axiom of
real pm}ccme geometry is valid in elliptic geometry, we simply
adopt the axioms of §2.1, and agree to specialize a uniform
\pcianty ‘This absolute polarity, having once been arbitrarily
chosen, is kept fixed, and a congruent transformation is defined
as a collineation which transforms this polarity into itself. All
the axioms of congruence then become theorems which can be

———

*Sommerville [2], p, 88.
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proved. The gain in simplicity is considerable, especially as
those axioms are more complicated than in Euclidean geome-
try (where a segment is uniquely determined by its two ends).
Moreover, all the theorems of real projective geometrys
(Chapters I1, 111, IV) necessarily hold also in elliptic geometryy
and form a substantial basis for the deduction of furtier
theorems. O

If we wish to develop elliptic geometry in two dimpénsions
only, we begin with the real projective plane, and specialize
an elliptic polarity {§3.2). This will be done’int Chapter vi;
but in the present chapter we are stiil less\ambitious, being
content to consider the geometry of a sjnﬁle line. Instead of
an absolute polarity we now have an absolute tnvolution. This
is initially any elliptic involution ihythe real projective line;
but when once chosen it is retainéd throughout the whole dis-
cussion. By definition, its pairs are comjugate points, which
divide the line into right sgg&iénzs.

Analogously, we can detive Euclidean from “‘affine” geometry* by
specializing an elliptic Rolq\ity (or jnvolution) in the plane at infinity (or
line at infinity). In€det,"the geometry of puints and lines in the plane at
infinity of affine space‘is projective, whereas the geometry of points and
lines in the plape atinfinity of Euclidean space is elliptic.

A\ ¥

5.2, ‘Models. In §1.7 we illustrated two-dimensional
elllpr.geometw by a model consisting of a bundle of lines
and planes in Euclidean space. The analogous model for one-

dmensional elliptic geometry consists of a flat pencil in the

W

‘Euclidean plane, conjugate points being represented by per-
pendicular lines. But in this one-dimensional case, excep-
tionally, another simpler model is available. In fact, the
geometry of the elliptic line is identical with the geometry of

an ordinary circle, points being “‘conjugate’ when they are
diametrically opposite.

*Robinson (1], Chapter 1V.
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The existence of this model may be regarded as a conse-
quence of the possibility of defining projectivities on a conic
(§3.4). For, a circle is a conic, and the lnes joining pairs of
any involution on a conic are concurrent, like the diameters
of a circle. "There is no analogous theory for a quadric, and<
consequentiy no one-to-one representation of the elliptic plane
on a sphere. ' O\

To emphasize the abstract nature of the clliptic geommetry
itself, we may place the two models side by side, ag jn the fol-

lowing dictionary: o\

The elliptic line  The Euclidean plane in  The cireumférence of a circle

the neighbourhood AD)
of 2 fixed point O ¥ .“\
Point Line through O ‘Paﬂt on the circle
Segnient Angle AN Atc
Supplementary Supplementary angles A .7 Major and minor arcs
SCgIents SN .
Right segment Right angle R Semicircle
Translation Rotation about O Rotation about the centre
Reflection in g Reflection img line Reflection in a diameter
point through\Q '

It must be clear ':ir;derstood that models are not part of
the logical devclopment of the subject, but merely suggestive .
aids, like diageihs (Both models are used in Fig. 5.3a, the
second along\fn'Figs. 5.44 and 5.4B.) There is no longer any
question, gf\éensistency; for, since no fresh assumptions have
been madeSince §2.1, elliptic geometry is as consistent as real
pr0j¢§:§five geometry.

£\

. 5.3. Reflections and translations. We saw, in 2.99, that
every projectivity permutable with an elliptic involution @
(other than Q itself) is either elliptic but not involutory or else
2 hyperbolic involution. When @ is the absolute involution
(as we shall suppose from now on), we cail this hyperbolic
involution a reflection, and the elliptic projectivity a frans-

7
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lation. The same theorem tells us that, for any two points
A and B, there is a unique reflection ,&3, and a unique trans-
lation ,¥g, each taking A to B. In the special case when A
and B are conjugate, s¥g=. ~

The remarkable power of Theorem 2.99 is apparent in\the
ease with which the following important results can be déduced.
The product of two projectivities, each permutable(With @, is
itself permutable with Q. (In detail, Q60 =(9§’$B’ = 56'0.)
Hence, by 2.98, the product of two reflections/ox of two irans-
lations, is o transiaizon; but the product of"a,\;eﬂectém and a
translation is a reflection. In symbols, for any three points
A, B, C on the line, we have \\

a®s 3%c = a¥o = a¥s s¥c

: a%®p 3¥c = A®c\= aVs 5%c.
It is therefore natural telextend the notation so as to
include oo
¥ =1,
in agreement with the.obVious fact that s ¥p™1=p¥;. Buta®,
is the involution ywhose double points are A and AQ; we call
this the reﬂecﬁz’;{hﬁn A (or in AQ). Since APy inlerchanges
A and B, it ig the same as g®,.

If & isyany reflection, and ¥ any translation, we have
R =@-§>ﬁ1f{,~\where ®7¥ is a reflection, Hence
5.31=§:Every translation is the product of two reflections, one of
ick may be chosen arbiirarily.

Fic. 5,34
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Again, since ¥, being a reflection, is of peried two, we have
5.32, ThE =P,

Thus, if AP=B and B® =, then A<15=A‘I'<15‘II=B<I"I’=C‘I!.,
Calling this last point D, as in Fig. 5.34, we deduce the following
theorem (which justifies the definition that we shall adoptfer
congruent segments): N\ *

5.33. The relations a¥g=c¥p and ydc =,y are ggﬁfﬁalmt.

Since the second relation is symmetrical betweef\t*B and C,
another equivalent relation is a¥o =gV, ~\

Our use of the words “reflection” and\“translation” js
explained by the fact that the above theorems hold also in
Euclidean geometry; but the method ofproof is quite different,
since the Fuclidean line admits no:absolute.involution, 1no
conjugate points. In Euclideanygeometry, any two trans.
lations are permutable, but D.Q*t:'ﬁ;fb reflections are permutable
(in one dimension). We n‘oﬁf investigate the corresponding
results in elliptic geometoy,

Let ¥ and ¥ be two }ranslations, and A any point. Define
B=AV, C=AW, D’§<C'<If. Then, since the relation aVy =T,
(=%) is equivalént to 8¥p =a¥c(=7'), we have B¥ —D.

Thus AN AV =D =AYV,

and therefofe o ¥’ =a¥p =¥"¥, Hence
.”\‘~

5.34, Py two translations are permuiable,

Clri:the other hand, if reflections a%®p and pPc are permu-
Efib&i,’we have
V) aVe=y,Pp pbc=pdc By =cdp yb, =T,
By 5.33 (with C for B, and A for D), this implies cPe=,B,.
Thus, if A and C are distinct, they are conjugate, and , ¥ =0.
Hence

5.35. If two reflections are permutable, their product s the abso-
tute involution.
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5.4, Congruence. Since we are considering a single ling,
we are free to make a convention whereby one of the two
sense-classes is distinguished as '‘positive’” or “left to right.”
If the triad ABC belongs to the positive sense-class, the seg-
ment AB/C is denoted by AB, and the supplementary segnfent
by BA. When A and B are conjugate, AB and BA ;Qfg\régkt
segments. N

Two segments, AB and CD, are said to be gongruewz if
A‘I’B C‘pD (Ol’ gPc = A@D! or A\PC—B‘PD); B.I'Ld we write
AB=CD. We see at once that this 1mphe9?&C."BD

The relation of congruence is reflexivd, symmetric, and
transitive. It is also “‘additive,” ins Q}e following sense. If
AB=DE and BC=EF, as in Fig, 5\L& we have s ¥p=g¥p=
Vg, and therefore AC=DF., "

\'\" FiG. 5.44 Fig. 548

{ '\l‘o congiruct the segments CD and DE of 5.11, we merely
3 have to apply g¥p and ,¥p, in turn.  (See Fig. 5.4B.)

1f AB and CD are right segments, ,¥5 =Q =¥y, Thusall
right segments are congruent.

We define the mid-poinis of the segments AB and BA as the
double points of the hyperbolic involution ,&5. Thus 1®g
may be described as the reflection in the mid-point of AB (or
of BA). Since the two double points are a pair in @, the mid-
points of supplementary segments are conjugate.



§5.4 CONGRUENT SEGMENTS 101

Let O be the mid-point of AB. Then ,%5= %5, and

therefore
AO=0B.
The transtation 4 ¥y is the product of reflections in A and O;
for,
4%s 0Po=aPs aPp=4T5. L\
N\

5.5. Continuous translation. The following cons1dera-

tions erable us to define any power of a translation,. For any

n+1 points A, B, C, ..., G, H, we have R4
A‘I'H '_-A‘I’B s¥c ... o¥n. NN
In particular, if AB=BC==. .. =GH, so §I;'(al‘?;‘l'3 =g¥c=...
=g%y =¥, say, we obtain N\
A'\PH \P” P \ N/

This notion of a power of ¥ can be extended to fractional

values of #, as follows. If Qi is the mid-point of AB, we write
a¥g = ‘1’1/2

observing that (‘91/2)2\A‘PO o¥g=,¥py=10. By repeated

bisection* we defing ¥&/%, %%, . .., and deduce ¥ where #

is any termmatmg Cﬁecimai” in the scale of 2, e.g.

“‘IJG 1011 ,_11,1/2‘1,1/8\1,1/16
W

Now, if n\15 any number between 0 and 1, the 1's i1t its
binary expansmn determine a sequence of points A4,; v.g.,
n=0. 1Q1Q\ . gives

VA =AY, A =AWYE A=A L
?mﬂ :Ve can apply axiom 2.13 to the segment AB, taking as one

£all points which lie in at least one segment AA,, and as the
other the remaining points of AB. If M is the point deter-
mined by this “Dedekind cut,’” we write
‘I’” el A\PM'
*Veblen and Young [2], 11, pp. 151-154; Enriques [1], p. 393.
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The extension to values of # which are negative or greater
than 1 presents no difficulty.

We proceed to prove that, conversely, any translation can
be expressed as a power of any other. In particular, A
5.51. Every translation is ¢ power of Q.

Proor. We shall see that, for any segment AB, @h\éi“e.\fs a
number %, between 0 and 2, such that ¥y =% In fact, the
following process leads to a binary expansion _{™

_ _ ay ita LEN { &
#=@p.d12283 . . . =T o —I—22 +2,8:} Cae

We put ¢¢ =0 or 1 according as B lies in the.segment AA’ or A’A
(where A’=AQ). We then bisect thé segment thus selected,
and put ¢:=0 or 1 according as Bl{es in the left or right half.
And scon. If at any stage a paoint'of bisectiorn coincides with
B, we write g, =1, and the “detimal” terminates. In any case,
a definite number # is obtiined; and this power of Q, inter-
preted as above, is precisely 4¥5. We can include the case
when B coincides with\A by defining °=1.

To express ang\translation as a power of any other, we
merely have tg observe that @ = @Qrym/=,

As defineduah §5.3, a translation is a “sudden” transfor-
mation, reldting every point to another point. But since the
trans!:g,tibﬁ ©" can be obtained by a gradual increase of the
expodent of & from 0 to #, there is another aspect of it as a
"deformation,” gradually displacing every point to a new

:.\'pé'sition. According to the first aspect, we have @*=1; but
<\3 “according to the second, we can distinguish ©2 as a displace-
ment over the whole line in the positive sense. Thus any
segment AB determines an infinity of translations 9", 7
being an arbitrary integer (positive, zero, or negative). We can
select a definite one of these by making the expenent lie be-
tween 0 and 2,

A reflection, on the other hand, is essentially “sudden.”
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In the language of the theory of groups, the class of trans-
lations is a continuous abelian group, and is a subgroup of
index two (by 5.31) in the non-abelian group of translations
and retfections. N\

5.6. The length of a segment. To define the Iength nf‘a
segment, we seek a property which is invariant under con-
gruent transformation, and additive for Juxtaposed ‘ségments,
ie.

AB+BC=AC &N

whenever B lies in the segment AC. Since iWp g¥c =4 ¥, we
consider the power to which the translation @ must be raised
in order to transform A into B. To precise, if ,¥yz=0"

(0<n<2), the segment AB is said fo)be of length )\, where A
is an arbitrary constant depend.lrrg on the unit of length; and
we write A\

AB =nA.

(No confusion need result'from using the same symbol AB for
a segment and its Iengt The context always shows which
meaning is 1r1tendbc1\) It foliows immediately that two seg-
ments are congr@iént if and only if they have the same length.

If A and>Bddre conjugate, we have AB =X, and the length
of the wholeslme is obtained by juxtaposing two such segments:

O AB+BA =2

Of coﬁrse AB+BA is the whole line even if A and B are not
Ccmqugate, in which case the shorter segment is said to be
"&»gme and the longer obtuse. The length of the acute segment
\‘IS called the distance between A and B.

The choice of 2 unit has not the same kind of arbitrariness
here that it has in Euclidean geometry, since the distance A
plays a special role. In fact, we shall find that 2 judicious
choice of » greatly simplifies the appearance of certain for-
mulae,
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5.7. Distance in terms of cross ratio. We saw, in §4.1,
that the points of the line can be represented continuously by
the real numbers and w, these being the values of a non-
homogeneous coordinate or abscissa, x. By 4.27, the simplest
form for an elliptic involution is
5.71. xx'+1=
Let the fundamental points Py, Pl, P, be so chosen Lhat this
is the absolute involution £. -

Then the abscissae of a typical pair of cdnjugate points
are i and —17L. By 4.28, the involution whieh has these for
double points is ) \\

5.72. xx' —2(— D (x+x")— (':
This, therefore, is the general reﬂedzon but, by 4.29, the
- reflection in Py is

.\\

xtx .f—"ﬁ.

Combining these two reflecfions, by putting —=x for x in 5.72,
we obtain the general tza#slation in the form
5.73. xx' ~{(¢ Y x—x)+1=0
or \
&' —x) /(1 tae’y =26/ (1 —17).

This can het suﬁphﬁed by a trigonometrical substitution. In

fact, pu tmg x=tan £, «' =tan {, f=tan 14, we obtain

tan (E/~%&f =tan 6, whence

5. 74§ £'=£+0 (mod 7).

3 It need hardly be pointed out that the tangent function, though

P ;Y;ommonly defined in terms of Euclidean geometry, can just as well be

h
\ / defined analytically, say by means of the differential equation j—' =14
x
{with ¥ =0 when x=0).

For any number £, with 0< ¢ <=, there is a definite point (£)
whose abscissa is tan £ As £ increases steadily from 0 through
37 tow, tan { increases from 0 to o and then through negative
values back to 0. Meanwhile, the point (£) describes the line
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by means of the continuous translation 9%, where » ‘increases
steadily from 0 to 2.  If £" and Q™ translate the origin (0) to
(£) and (8) respectively, the combination Q"™ translates (0)
to (£-+#), in accordance with 5.74. Hence ¢ and # increases
proportionately, and Q* translates (0} to (§wz). In other
words, the length of the segment from (0) to (£), or of the equ‘al
segment from (#) to (£4-8), is proporticnal to £, in the notatlon
of §5.8, it ig precisely 2&x/m. N
In terms of 4, the translation 5.73 takes the,fgore familiar
form O
xx'+{x—x") cot #+1=0
or oV
5.75. = FCosB sl
—x sin 8+6o8 8
To obtain a formula for length*which is independent of the
choice of fundamental points’,:\ii"e calculate the cross ratio that
the ends of a given’ segme‘z;t"make with their respective con-
jugates. Consider a segment AB, whose ends are (£) and (n).
The conjugate points(Aand B’ are (§+4r) and (y==4w). The
abscissae of these \fnﬁr points are tan £, tan 3, —cot £ —cot 2,
Hence, by 4. 31 )
}\ (tan E—tan n)(—cot £+cot g) _
L) (tan E4cot 9)(—cot §—tan x)
~.‘\ (tan g —tan £)* _ = —tan?(y—£).
.‘ N (1 —tan 5 tan £)?
’“‘In other words, if AB is-a segment of length 26\/r, we have
{AA’, BB’} = —tan’,
and therefore, by 4.32,
{AA’, B'B} = —cot¥, {AB’, A'B} = cosec™,
{AB', BA'} =sin2, {AB, B’'A’| =cos?,
{AB, A’B’} =sec’.
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Selecting a convenient one of these cross ratios, we express
the length itself as

5.76. AB =2 arc cos (+/[AB, B'A)), ~
T

where the ambiguous sign is determined by the sense df\the
triad ABA/. O

Our measure of length agrees with the radiap.measure of
angle or are (§5.2) if we take A=1%1r in the ﬁrjs}: niodel, and
A== in the second. Then the length of thg@rh\ole line is = or
27, respectively. !

, A

5.8. Alternative treatment using.ﬂéh‘é complex line. Many
of the above considerations are formatly sunplified if we regard
the real projective line as a subspace of the complex projective
line (§4.9). Then the invol jtion @ has two conjugate imag-
inary double points, say Mand N. A projectivity permutable
with © must either interchange M and N, in which case it is
an involution, or leave'both M and N invariant, in which case
it cannot be an ifwblution unless it is Q itself. Hence the
reflection &y igﬁqe Involution (AB)(MN), and the translation
Ay is the projectivity in which A M NK BEMN.

It is thiﬁ possible to define the elliptic line as the complex
proje(;t@e line with -two conjugate imaginary absolute poinis
spe,(’{@l.iz'ed, or rather as the real part of such a complex line.
From this aspect, comjugate points are harmonic conjugates

~with respect to M and N, and two segments AB and CD are

\“Congruent if

ABMNKCDMN.

When the elliptic line s regarded as the line at infinity of
the Euclidean plane, M and N are recognized as Poncelet's
circnlar points at infinity. For, as Chasles observed in 1850,
two lines in the Euclidean plane are perpendicular if (and only
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if) their points at infinity are harmonic conjugates with respect
to the circular points.* Extending this result, Laguerre showed
in 1853 that the angle between any two lLines is proportional o
the logarithm of the cross ralie which their points at infinity forms
with the circular poinis.

The recognition of this as a theorem in one-dlmensmﬁ’al
elliptic geometry is due to Klein.f He saw that 1t {can be

,

derived from the relation N
{AB, MN} {BC, MN} = {AC, Ml\(}\,

which holds for any five collinear points. (See 434) If M
and N are the absolute points, the cross r&t&o {AB, MN! is the
same for AB as for any congruent seginent; it is therefore a
function of the length AB, say f(AB‘), ‘and satisfies the func-
tiona! equation
f(AB} - f(BC) j.—ff(AB+BC)
or f(u) - f(v) =f(u+v). Sineg f(v) tends to {BB, MN} =1asv
tends to zero, f(u) is contiﬂlious Hence
\ flu) =¢&*,

for some constant\(\ “But f(#) must be periodic, with period
2); therefore ¢\
5.81, \ k=7i/\.

Repregé}atlng each point of the complex line by a complex
absc:s,%x, we observe that M and N, being the double points
of théabsolute involution 5.71, have abscissae ==i. Let x and

ybe the abscissae of A and B. Then

(x—1) (y+2) .
(x+i) (y—17)

Formula 5.76 may be verified (in the case when AB=}) as
follows:

*Poncelet [1), 1, p. 48; Chasles [1], p. 425; Laguerre [1], p. 64.

{Klein [3], pp. 146, 164.
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cos (vAB/2)\) =cos (xAB/21)
=cosh (xAB/2)
=1 (e"AB/2 4 gmrAB/2y

=1(- (x=d) i) | (x+z)( S
W et o (x zm%w
_ (i) ) ety (3
2v/(x+i)v/ (2 — z)\/(ywm i)
xy+1 O
«/(x2+1)\/(y2+1;\>\\
(+y™) (&
(x4x— @4 ﬂ)
=v/{AB,BA'}.

’/',:

N\



CHAPTER VI -
ELLIPTIC GEOMETRY IN TWO DIMENSIONS

6.1. Spherical and elliptic geometry. As we saw in. §I7\
a cenvenient model for the ellipt'c plane can be obtained by
abstractly identifying every pair of antipodal pomts on an
ordinary sphere. The reflections and rotations ~which we shall
define in §§6.2 and 6.3 are represented on the sphere by reflec-
tions in diametral planes and rotations about diameters.

In clliptic plane geometry, every reflétion is a rotation.
This rather startling result is a conséiiﬂence of the fact that
the product of the reflection in anydlametral plane and the
rotation through = about the perpendmular diameter is the
central inversion f(or pomt—;‘éﬂecnon in the centre of the
sphere}, which interchangés"éntipodal points and so corres-
ponds to the identity i elliptic geometry. In any orieniable
space (§2.5), a re gtion reverses sense, whereas a rotation
preserves sense, )\ us the above remarks are closely as-
sociated with the unonentablllty ol the real projective plane
{in which lili[;tic geometry operates). On a sphere, corres-
ponding refations about antipodal points have opposite senses;
80 thn;%déntiﬁcation of such points abolishes the distinction
of seil,se

~‘ It was shown by Euler in 1776 that every displacement of
\a' sphere (keeping the centre fixed) can be obtained as a rota-
tion. In elliptic geometry we have the stronger statement
that every congruent transformation can be obtained as a rota-
tion. The problem of combining two rotations of a sphere
was investigated between 1840 and 1850 by Rodrigues, Cayley,
Sylvester, Hamilton, and Donkin. Their results are imme-

109
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diately applicable to elliptic geometry, which, in turn, provides
alternative proofs for them (§§6.6, 6.8).

Every diametral plane of the sphere determines a perpen-
dicular diameter. In other words, every great circle has a pair
of poles, which are antipodal points. This correspopdetice
represents the absolute polarity of elliptic geometry. . F6r the
reasons given in §5.1, instead of basing our investipation on
the notion of congruence, we shall take over the Axibms of real
projective geometry, and define all the metfiéal concepts in
terms of this absolute polarity, which is dnarbitrarily chosen
elliptic polarity. RN

If we chose to single out a hyperbdlic polarity instead, the

result would be hyperbolic geometty (with “ideal elements”;
see §8.1). QO

R
<N

6.2. Reflection. Twoipbints, or two lines, will be said
to be perpendiculor if they are conjugate in the absolute polar-
ity. Thus any line threugh a point A is perpendicular to the
absolute polar of A{'and every point on a line a is perpendicular
to the absolute’pole of a. Two perpendicular lines, and the
absolute polat of their point of intersection, form a self-polar
triangle, of Which every two sides are perpendicular, and like-
wise everytwo vertices. The geometry of points on any line
15 % & oite-dimensional elliptic geometry described in Chapter
Vdts'absolute involution being induced by the absolute polar-

\ity We now speak of perpendicular points rather than con-
\.JJugate points, because the dual concept of perpendicular lines

is closely analogous to the concept so named in Euclidean
geometry. For the same reason, we fix the unit of length by
writing X =4, so that the length of a right segment is 17, and
!:he length of a whole line is ». (When more than one line is
involved, we naturally have to abandon the convention

“.rhere.:by the two segments terminated by A and B were dis-
tinguished as AB and BA))
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Let 0 be any line, and O its absolute pole. If we define
the reflection in o (or in O) as the harmonic homology with
axis o and centre O (§3.1), we find that it has all the properties
commonly associated with the idea of reflecting in a line (ox™
in a point). This transformation is involutery; and, bping
invariant with respect to the absolute polarity, it relates pe\n
perdicular lines {or points) to perpendicular lines {or, points).

The fact that a reflection is permutable with the“absolute
polarity may be seen in greater detail as follows."/Let A be a
general point of the plane, B its reflected image; 'O’ the point
{0, AB), and a, b, o’ the absoclute polars of ANB, ¥, as in Fig,
.24 (where the lines are drawn as arc§of circles, so as to
allow angles to be represented withent distortion).. Then
H(AB, 00’); therefore H(ab, 00’), 4nd'b is the reflected image
of a. o

By 3.13, the product of ;:gﬂé(ftions in the three sides of a
self-polar triangle is the idgntity. Hence

6.21. The product af"x'{);lectiom in two perpendicular lines 1s
the reflection in the \c@m}non perpendicular of the two lines.

N

\ O , A o B
Fic. 6.2 Fr6. 6.3a
6.3. Rotations and angles. A rofotion about a point O

may be defined as the product of reflections in two lines
through Q. The point O is transformed into itself; so also is
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its absolute polar, 0. With every segment PQ of o, we as-
sociate the product of reflections in OP and 0Q. (See Fig.
6.34.) This rotation induces in o the one-dimensional trans-
lation A
pdr o25 = p¥r, .
where R is the image of P by reflection in Q. Whet\Q is
perpendicular to P (so that PQ is a right segment), the’\rﬁtation
reduces to the reflection in 0, by 6.21. In this cas¢ ‘Ricoincides
with P, but the two supplementary segments'OP are inter-
changed. We denote this invelutory rotatidn by @, regarding
it as the absolute involution of the cne-divhensicnal clliptic
geometry whose ‘‘points’ are right segifients emanating from
0O, and whose ““translations’ are rotatic}rlé about 0. We define
Q" for alt real numbers %, as in ’§5.:5.' In order to agree with
the ordinary radian measure 8fidngles, we take the unit of
length in this one-dimensiop\é.’li'géometry to be such that A=
Then segments OP and ORare said to form an angle /POR =8
if OR is derived from QP by applying the rotation £**, which
we describe as a rotation through angle §. (Cf. §5.6.) This
rotation induceskin 0 a translation of length PR=#, but the
“‘associated” segment PQ is of length 36. Thus the total angle
at a point)i$2w, although the total length of a line is only =.
(If we wish/to extend the principle of duality to metrical con-
cepts{We must take, as the dual of length, the measure of a
“diterted angle’” or “‘cross,”* instead of an ordinary angle.)
A% A convention of “positive’ sense enables us to distinguish
~two angles ZPOR and ZROP, whose sum is 2r. Since OP
/ may mean either of two supplementary right segments, we
make this distinction precise by taking an arbitrary point A
in the segment under discussion, and similarly a point C in the
segment OR, and writing ZAOC for the angle between the
directed (or oriented) lines OAP and OCR.

*Johason {1}, [2]; Picken [1]; Forder [1], p. 120.
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If & and A’ lie respectively in supplementary segments OP,
we have LAOA'= /A'OA=7 (a “straight angle”}. (Thus
6.21 asserts that reflection in o is equivalent to rotation through =
about Q.) Two angles Z/AOB and ZBOA’, whose sum is T,
are said to be supplementary, If OA and OB are perpendicu;
lar, so that these angles are equal, each is a right angle (=3&h")
Most of the one-dimensional theorems about segmeni;slc\an
immediately be interpreted as theorems about angleg*at ‘one
point. For instance, if ZFAQDB= ZCOD, so that thé\"mtation
which takes OA to OB also takes OC to OD, then™ 2 AOC =
£BOD. This happens, in particular, when ~ABBand £COD
are {positive) right angles. 2\ /

The convention which distinguishes .JBOA from £AOB
can to a limited extent be applied to angles at distinct points,
by continuous variation within suchi a region as the interior
of a triangle. But it cannot be applied universally, since the
projective plane is not orientabl;é.’ In general, therefore, the
symbol £AOB may mean either of two angles whose sum is
27, just as AB may meandeither of two segments whose sum
is 7. If the context doesdot indicate otherwise, we shall take
the smaller value. \For instance, we say that any two lines
determine two supplethentary angles, respectively equal to the
lengths of the W0 supplementary segments formed by their
absolute po!eg;'\"

6.4, .s\l{gruence. In §§56.4 and 56 we defined con-
gruenedin terms of translation, and showed that congruent
Segﬂéehts have equal lengths. In two-dimensional geometry
wewgan take advantage of the one-dimensional determination
of length, and define a congruent fransformation as a point-to-
point correspondence which preserves length. Since a line is
the locus of points distant ir from its absolute pole, such a
correspondence is a collineation. Since it preserves the rela-
tion of pole and polar, it is permutable with the absolute

8
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polarity. A congruent transformation could alternatively
be defined as a collineation which is permutable with the abso-
lute polarity, the preservation of length being a consequence
of the one-dimensional theory. ~
Thus a reflection is a congruent transformation {(and there-
fore, so also is a rotation). Conversely, O\
o dis-

6.41. Any congrueni iransformation which preserves,
tinct points is o reflection (if it is not the identily) £

< X

Proor. If the two points, say O and A (Kig‘ 6.24), are not
perpendicular, the congruent transformadion preserves also
the absolute polar o, and the point Of\where o meets OA.
Hence, by 2.84, it preserves every. pdirtt on OA. The projec-
tivity induced in o is either the identity or the one-dimen sional
reflection in O’. In the formertase, the whole transformation
is the identity, by 3.11. Inﬁfjche Jatter, it is the reflection in
OA.: for, its product withwthdt reflection preserves every point
on 0, as well as every;poiﬁt on OA,

Ii, on the othertand, the two given fixed points are O and

! it may happén+that every point on 00’ is preserved, as
before; but apether possibility is that the projectivity induced
in Q0 is gl{éﬁne-dimensional reflection in O. In that case the
whole jc.qémsformation is the reflection in either o or 0'; for, its
prodmetavith the reflection in 0 preserves every point on 00/,
apd)s6 is either the identity or the reflection in 00,

' '\.f " We are now ready for the important theorem
\ 6.42. Every congrueni iransformation (of the plane) is @

rolation.

ProOF. By 3.52, any collineation preserves at least one
point. In view of 6.41 and 6.21, it will suffice to consider a
congruent transformation which preserves only one point, say
(?. This induces, in the absolute polar 0, an elliptic projec-
tivity permutable with the absolute involution, i.e., a trans-
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lation. This translation, of leagth 8, say, could have been
induced by a rotation through angle ¢ about 0. Consider the
product of the given transformation with the inverse of this
rotation. This product, preserving every point on o, must
be either the identity or the reflection in o, which is the rota-
tion through angle » about O. Hence the given transforma3,
tion is a rotation through either angle ¢ or 8+ about Q. O

Two figures are said to be congruens if one can be'defived
from the other by a congruent transformation, Le., by a
rotation. ' N

This definition is easily seen to satisfy the familiar properties of
congruence, Censider, for instance, the theorem ‘Eﬁhclid I, 4} that two
triangles ABC and A'B'C’ are congruent if twp\'sfdes and the included
angle of the one are respectively equal to twosides and the included angle
of the other. By a suitable rotation about thé absolute pele of AA', we
obtain a triangle AB,C,, congruent te A'BY" If we are given AB=A'B’,
a suitable rotation about A carries ABS; to ABG,. If we are also given
£BAC= LB'AC and AG=A'C athe point €, either coincides with C
or is its image by reflection in AB, “¢This is essentially Euclid’s own proof,
with the superposition of a tria gle replaced by a congruent transformation
of the whole plane.) By 6.42;the various transformations used could he
combined into a single ré@sjc’)’n.

AN

On page 17w mentioned the standpoint of Klein's
Erlanger Progpugm, wherc the various geometries are distin-
guished by ”\tlh:-" groups of transformations under which their
perertie‘s\:af‘e invariant. We conclude from the results of
Chapte\IT1 that the group for projective geometry consists
of albecllineations and all correlations. We see now that the

%‘O}up for elliptic geometry is a subgroup of this, consisting of
those collineations and correlations which are permutable with
a given uniform polarity. In the two-dimensional case, these
collineations are just the rotations, and the correlations are

derived from them by applying the absolute polarity itself.

6.5. Circles. A cirele with centre O may be defined as

Q.
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the locus of a point under continuous rotation about O, or as
the locus of a point whose distance from Q is constant, say R,
the radius. Since no distance can be greater than 47, we have
R€4r. The rotation through = gives us two “diametrically
opposite” points of the circle, which are images of one andther
by reflection in the absolute polar of O, say o, the €%, A
circle of radius 37 is mercly the axisitself, described(twice over.
In the following investigation, we suppose tha(t.fj{\’z};w.

F1G. 6.564

Giyehf\t{m diametrically opposite points B and C, and a
varjable point A on the circle, let OP (with P on o) be the
P,@@dicular bisector of CA, asin Fig. 6.54. Then the rota-

«\Hoh which carries C to A is the product of reflections in OC

NS and OP. The former reflection has no effect on C. The latter
\'"‘; * is the harmonic homology with axis OP and centre Q, the abso-
lute pole of OP. If BC meets 0 at O’, we have H(BC, 00’);
therefore BP, the refiected image of CP, contains A. Hence

the circle may be constructed as the locus of (BP, CQ), where

P and Q are a variable pair of perpendicular points on the

axis 0. But P and Q trace projectively related ranges on o.
Hence, by 3.34,
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6.51. [Egery circle is a conic. .

It is interesting to observe that the same reasoning applies in Euclidean
geometry, if we replace o by the line at infinity. Then ZBAGisa right I\
angle; but in elliptic geometry it is obtuse. N
¢\

When P coincides with 0’, Q coincides with 0", the gbso-~
lute polc of BC. Thus CO”, perpendicular to BC, is(tﬁg tan-
gent at C. Hence K2

LV
0.52. Any tangent to a circle is perpendiculat Yobhe diameter
through its point of contact, N

It follows also that O, besides being<t1;3 absoluie pole of
BC, is the pole of BC with respect to \the circle.  The axis o,
containing no point on the circle, i§’a1'1“extcrior line; hence the
centre, its pole, is an interior poipt:s But an arbitrary point D
on the tangent at C is an extgfitfr" point. By considering the
right-angled triangle ODC, werdeduce that

6.53. The hypotenuse of an geute-sided right-angled triangle 15
longer than either of f%\esdtker sides.

In other wordg.the shortest distance from a point to a line
is along the pecpéndicular line, We naturally call this the
distance fronPtHe point to the line; it is the “‘complement’’ of
the distan€e)rom the point to the absolute pole of the line.
Thus afircle of radjus R is the envelope of a variable line
dista}{ft"R from the centre, and also the locus of a variable point
distart 21— R from the axis. Since £CO"Q’'=CO’'=ir—R,
the’ samc circle is the envelope of a variable line making a
constant angle with the axis.* These remarks reveal the circle
as a self-dual figure.

Since diametricaily opposite points are images of one another by

reflection in 0, we have the paradeox that the circle, continuously described,

remains at a constant distance from o *“on one side” and later reappears
-

*Coolidge [1], p. 131.
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at the same distance “on the other side” The cxplanation is that the
two sides of a line can only be defined Iocally, since the whole line does
not divide the projective plane into two regions. When R approaches its
maximum value, i, the circle resembles the periphery of the famili
Mabius band, which may be modelled by joining the ends of a long strip
of paper after making a half-twist. The line bisecting the width b{ ihe
strip represents 0. [t is now casy to see how, in the limiting, c@sn\:"when
R=4, the circle reduces to the line o described twice over; so that its
total length, or circumference, is then 2w, in agreemeniZWith the total
angle at its centre.

ak & i

"N
6.6. Composition of rotations. Sincahe product of two
rotations is a congruent transformatipfy/6.42 shows at once
that G

6.61. The product of two mrat{oiz:s'is a rotaiion.

We proceed to determjr{é vthe centre and angle of the
rotation which thus arigés‘from two given rotations, with
centres € and A, say, By 5.31, any rotation about C is the
product of reflection§in two lines through C, one of which may
be chosen arbitrarily. Hence there is a point B, such that the
given rotation about C is the product of reflections in CB and
CA, while the.given rotation about A is the product of refiec-
tions in AC4and AB. Then, since the reflection in CA cancels
out.',t\h'g\{)roduct of the two rotations is the product of the
reflestions in CB and AB, which is a rotation about B.

A\ Thus, to obtain the product of rotations through angles ¥

e) and « about C and A, we draw CB and AB so as to make

£(BCA=ly, s/CAB=%e. The resultant rotation is then
through 2 Z/CBA about B. The special case when y=e=7

and CA =17 has already been considered in 6.21. The general
case may be expressed as follows:*

6.62. The p.raduct of rotations through angles 24, 23, 2C about
the three vertices of a trigngle ABC is the identily.

*Sylvester [1], p. 441.
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In §6.3 we found it convenient to represent a rotation
through angle § about O by a segment of length 12 of the
absolute polar, o (along which the rotation induces a trans-
lation of length 8). Since the starting-point of this directed

segment is immaterial (provided it remains on o), we may call'

it a vector of length 36 along 0. By considering the polat wrts
angle of ABC, whose vertices D, E, F are the absolute pol‘es of
BC, CA, AB, we see that 6.62 is equivalent tog ~\

6.63. Donkin’s Theorem.* If DEF is any; \gmngle, the
product of rotations represented by veciors EE;WFD, DE is t2e
ideniity. A,

) i Fic. 6.6a

NS

Doﬁ\km s own proof is delightfully perspicucus. It consists
in OhServmg the effect of the three rotations on the triangle
rl'i"\:ked 1in Fig. 6.64. :

\ By applying 5.35 to the one-dimensional geometry of right
scgments emanating from O, we see that two reflections cannot
be permutable unless their axes are perpendicular. By 5.34,
two  rotations are permutable if they have a common centre.
The condition for two rotations with distinct centres to be

*Deonkin [2].  See also Hamilton [4], p. 330,

N\
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permutable may be found as follows. From the construction
which led to 6.62, it is clear that the product of the same rota-
tions in the reverse order is a rotation about the image of B by
reflection in CA. If this image coincides with B, B must be~
the absclute pole of CA; then AB and BC are perpendicular ta
CA, and y=a=n. We now have the product of reﬁcctmns\n
BC and AB, and the product of reflections in AB and BC which
cannot be the same unless these lines are perpemdlcular, in
which case ABC is a self-polar triangle. Hencc,\*:*

6.64. If two retations about distinct points LYON p%rmmable, they
are rolalions through w aboul perpendicu!@ Jpoints.

In §2.1, we considered the prln(:lp'}e of transformation in
general. By applying this to rotations, we see that,if Yisa
rotation through ¢ about O, and®4s any other rotation, then
©71¥0 is a rotation through B«about the point 09. This result
may be verified in detail by performing the rotation through #
about OO in three stggeé,‘ as follows. We first apply the
rotation 871, which gakes 00 to O, then the rotation ¥ about
this transformedt é@nGre, and finally the rotation O, which
restores the cegitre of rotation to its original position.

N\

6.7. Formulae for distance and angle. Putting A=37 in
5.76, we Sée that the lengths of the two segments determmcd
by p%ﬁts A and B are given by -

™ AB=arc cos (++/[AB, B'A’}),

& A’ and B’ being the points where the line AB meets the absolute
N\ polars a and b. The upper sign refers to the acute segment
AB/A’, and gives the distance AB. There is some advantage
in using the “mixed’ cross ratio, of two points and two lines
(4.49), so that
6.71. AB =arc cos (£+/{AB, ba}).

*Stephanos [1], p. 357.

~
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The angles between a and b, having these same values,
may be expressed in the dually corresponding form
6.72, £ (ab) =arc cos (-£+/{ab, BA}).

According to the definition which was justified by 6.53, the(
distance from the point A to the line b is A\

AB’ =arc cos +/{AB’, BA’} N
6.73. =arc cos \/[Ab, Ba} =are sin \/[AB, b@]
In terms of coordinates, if A, B, a, b are (J{},'\(g"), [(x], [¥),

we have
R ED SRFR SN
(e X}y V] _
where {xY] =% Yo -+x1 Vi+x. Vs, and'go‘bn. If we take the
absolute polarity in its canonical farm

6.74. X, =%
(see 4.54), this can just as‘\jn'fel'lz be written in any of the fol-
lowing ways: N
N\ v} {Xv}
AB,ba} = {xy,]> = {x = )
AR TR T (77 TN (7]

where {xx} =x¢¥ %112 +x22, and so'on. Thus

{AB, ba}

cos AB = M-_,cosé ab) =4 {XY}
Vi T E Uy (v
In pa{*l\\kéﬁl.ar, A and B are perpendicular points if {xy} =0, and

a and b are perpendicular lines if {X ¥} =0.

OIf we suppose the coordinates of B to be derived from those
\G‘f A by continuous variation along the intended segment AB,
we can take the upper sign in the above expression for cos AB,
But the choice of sign in the expression for cos £ (ab) is less
obvious. Of the two supplementary angles between a and b,
the one usually preferred is that which contains some standard
point, such as (I, 1, 1). For two lines whose coordinates differ
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sufficiently little, this will in general be the obtuse angle; we
therefore take the lower sign.

On this understanding, the segment between points (¢} and
(y),the angle between lines [X] and [¥], and the distance from_
{x) to [¥], are respectively )

Carceos b —(x7
6.75.  arccos VTV , arc cos V{X{}}\x['yy} '
arc sin ] [xYH R Y

Tl P

It follows that the circle of radius R with-Centre (z) has the

ordinary equation W\
6.76. {ax}? = {2z} Jomp cos’R
and the tangential equation . “ .

{zx}r = {22} {XX} sin’R.

It is sometimes convé}‘liént to normalize the coordinates
2y, %1, ©s, replacing theth by such multiples that {xx}=1.
Homogeneity is then lost, although (x) and {—x) are still the
same point. (% \have here the analytical form of the model
described in §6.S The rormalized equation of the circle is

simply _ /™
A
6.77. ,\" [%x} =cos R,
W%r{\the centre is (1, 0, 0), this reduces to
6i78. %o=cos R,

N and the general point on the circle is (cos R, %3, 1), where
VY679, xit+x.2=sin® R.-

6.8. Rotations and quaternions. Quaternions were in-
vented by W. R. Hamilton in 1843, and were soon applied, by

Cayley «?m('i others, to the analytical geometry of rotations.*
The basic ideas are as follows.

*Hamilton (1], [2], {8]; Cayley [1]; Boole [t]: Donkin [11.
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(Guaternions are generalized numbers, consisting of ordered
tetrads of real numbers, for which addition and multiplication
are defined by special rules. If the quaternion consisting of
the real numbers @, b, ¢, d is written as Q

. a + bi + ¢f + dE, O\
the rules are those of ordinary arithmetic, excluding the com-
mutative law of multiplication, together with A\

P=j=k=ijk=—1 oM’
These clearly imply jk=— kj=1i, ki=— 1k_} ii=—ji=k

For a quaternion &4 = a + b + ¢f - @b we define the con-
Jugate u =g — b — ¢f — dE, the scalarﬁvrt%(u-l— t) = a, the
norm UM =t = o+ B+ A+ diay atd the remprocal ul=
#2/1u. By examining the con]ugates of ii, if, etc., we easily
verify that . AN

upE v,
whence the norm of a product equals the product of norms:
uv =V un v = uu v
{The real numbcr.uu\commutes with the quaternion 7.)

If the scalag IIX}E vanishes the quaternion is said to be pure.
Then = - - pjand uf = ~ut. Thusany pure quaternion of
unit nornm§“a square root of —1. The scalar part of the
produrt o\f\fwo pure quaternions t and v is

%U Huv + uv) = Huv + vu).

X }Bcfore applying these ideas to geometry, let us obtain the

l analytical expression for a rotation. The collineation 4.45 or

\ 34.48 is a rotation if it commutes with the absolute polarity
8.74, i.c., if

Cp = Cop.
Sinee ¢,,C,, =3,,, this condition is equivalent to
6.81. ECny =89

which makes the transformation x, =c,,x, ‘‘orthogonal.” By
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this transformation wehave { ’«’ }— Xy, = CAwbuCrl, = €y, 60, 8,5,
But {xx} =xx,=6,%., Thus the relation 6.81 is a ~onse-
quenceof {x’x’} = {xx}, and we deduce the following theorem:

6.82. If a linear transformation leaves the quadratic form {xx }\
tnvariant, it represents a roialion. N
A\
Consider the linear transformation .‘\ N
6.83. 2 taif+agk=5"(xed +x:5 +xgk)s, <\

where § is a quaternion. Since

—{a'x’} = (x01+x11+x2k}2-s l(xul-l-x]i-\r-xgk)?s
=8 1( Xot— X1 —xgz)s——{ x],
this transformation represents a rotatiof)) Clearly, there will

be no loss of generality in supposmg $'to be a quaternion of
unit norm.

With any line [¢], or {ux} =, 0, hormalized so that {uu} =1,
we may associate a pure quﬂ.termon u =yl + uj+ w:k of
unit norm. Since the scalag*part of the product

(el + urj ‘K’uzk) (vgf + v1f + k)
is — {ur}, the cosind\of the angle between two such lines [#]
and {7 is {us} = Xf(uv + vu). (This choice of sign makes
the angle vanish® when 4 =9, In 6.75 we employed the
opposite cofivention.)

The reﬁectlon in the line [#], being the harmonic homology

" with I}.@s [u] and centre (u) (sce 4.41), is
% = x,— 2u,{ux}.
. As a transformation of the quaternion # = xo! + x1f + ok,
\ ) this takes the form

=8 — 2u{ux} =& + ul(ux 4 su)
= uxu
(since w?= —1),
Now, every transformation &' = §7'xs is a rotation, every
rotation is expressible as the product of two reflections, and
the product of reflections in lines {u] and (2] is

& = vuxuwy.
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Since (Wv)'=vlul = (— v) (— u) = vu, this transforma-
tion may be identified with 6.83 by setting § = —uw, (It
would have been formally simpler to set § = +uvp, but the
minus sign has the advantage of making & = 1 when u = v.)
If this is a rotation through 4, the angle between [#] and [}
must be 36, so A

cos 38 = —3(uv + vu), ' \'\".\
which is the scalar part of 8. For a reason that wilMappear
in a moment, let us write the non-scalar part of .i\:ci’s Z sin 19,
where 2 = zgf + 215 +2k. Thens = cos ‘8\—\z sin 8, and
cog? 40 — 2% sin? 8 = §§ = 1; therefore ~%i=1, and z is a
pure quaternion of unit norm. Since § commutes with %, we
have 2 = §71z8, so the point (3) is legj}n;ariant by the rota-
tion &' = s~ws. We have now pr:o’\}e Cayley's remarkable
theorem {

6.85. The roiation through 6, abaut the point (z), where {z3} =1,
s gwen by the transfofmatson

i i +x, 7 -!—x k= s*l(xgt “+x17+x:k)8,
where 5= c(js 304 (zof 51 +2:k) sin 30.

In partlcuial\}he rotation through 8 about (I, 0, 0) is
given by ..

P\ xot—f—x]]-l—xgk
"gcbs 16—: sin 30) (% +x:17 +x:k) (cos 30 +i sin 36)
\:“' =zxoi+ (x5 +x:k)(cos 367 sin 19)2
".f'\ =xod+(x1f +x:k) cos 84225 —2:1k) sin 8,
,»\; j %, =2,
N\ 6.86, x; =x,; cos §+x; sin 0,

* .
l x,=—ux sin §+x cos 8,

which agrees with 5.75 when we put x =x1/%2.

To combine two given rotations, we merely have to mul-
tiply the corresponding quaternions. For, the effect of trans-
forming by s, and then by #, is to transform by s¢. However,
the correspondence between rotations and quaternions (of unit
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norm} is not one-to-one but one-to-twe, since s and —s have
the same effect. :

The advantage of the quaternion notation is also seen in
its conciseness. The general rotation of 6.85, when written
in full (with s =a--bi+-cj+dk), takes the far less elegant formt%,

%y = (a2 +b2— ¢! — @)y +2(bec+ad)x, +2(db —ac) s,
) =2(bc —ad)ito+(0* — b+ ¢ —d%)x, +2(cd +ab)ch,
x;=2(db—I—ac)xg—!-?(cd—ab)xl—i—(a?— 2o g,

6.9. Alternative treatment using the coni&edt‘ plane. The
expressions for distance and angle in terms) of coordinates
(§6.7) were obtained by Cayley in 1859\ Mis derivation of
them will be described later (§12.1). ,Phe idea of expressing
distance in terms of cross ratio is dué't\ Klein.t Both Cavley
and Klein regarded the real projeb:ti{re plane as a subspace of
the complex projective plane, afid defined the absclute polarity
by means of a conic, called.the Absolute. A congruent trans-
formation is then a collinégition which preserves the Absolute,

and may be described.{by 3.41) as a projectivity on the conic

itself. o)

The tangent&;a ‘the Absolute are self-perpendicular lincs,
and the pointg*en the Absclute are self-perpendicular points,
Thus the poliits in which any real line meets the Absolute are
the "abge(ut’e points” for that line. By 5.81, our chosen unit
of lengthiis such that x =94 Hence, by 5.82, if the linc AB
meets the Absolute at M and N, the two segments AB are
given by
N e2iAB= {AB. MN]*I,
and the distance AB is

6.01. log {AB, MN] )

2

*Klein [3], p. 102.
Cayley [3], pp. 88-89; Klein [1), p. 574.
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The acute angle between the absolute polar lines a and b,
being equal to this distance, may be expressed in the dually
corresponding form

log {ab, mn}
where m and n are the tangents to the Absolute from the. pem\t
{a, b). ..\
in both these expressions, the logarithm is a pnnczpal
value.” The other values would give the same xﬁsthnce or
angle plus an arbitrary multiple of . A

By 6.52, the tangents to a circle from itg\Centre are self-
perpendicular, i.e. they are tangents a,Pstho the Absolute.
Since the centre has the same polar w1t~h‘rcspcct to the circle
and the Absolute, the points of contact of these tangents are
the same in both cases. Hence
6.92. A circle is a conic wim‘,}z kas double contact with the
Absolute. N\

"l ¢
$

This is also clear from t@e form of 6.76, since the Absolute has
- the equation {xx}, =QV



CHAPTER VII

ELLIPTIC GEOMETRY IN THREE DIMENSIONS ~

7.1. Congruent transformations. In the present action
we describe those properties of perpendicularity, congrifence,
distance, angle, etc., which closely resemble thqix}:c{vé'o-dimen-
sional analogues. We mention also certain other’ properties
which more closely resemble their one-dimenfsibnal analogues,
because projective spaces of odd dimension are orientable.
In contrast to 6.42, we find various kind$ of congruent trans-
formation: reflections, rotations,ugétatory reflections, and
double rotations. The last of theSe’resembles the one-dimen-
sional translation in leaving nopoint invariant. A special case
of it, known as a Clifford trgnslation,* is intimately associated
with the existence of pairg-of skew lines which are parallel in
the sense of 1.11, Most of this chapter is concerned with
various devices forythe elucidation of this fascinating idea,
which is quite différént from the hyperbolic parallelism de-

scribed in §1.4. %M .
As in twd ﬁimensions, 80 in three, we begin with real pro-
jective geemétry, and introduce metrical concepts by singling
out andxbitrarily chosen uniform (or elliptic) polarity, calling

it th€ shsolute polarity. Then every poiat A has an absolute
pelar plane a, every line AB has an absolute polar line (a, 8),
_and every plane a has an absolute pole A. Every point of
~\\/is perpendicular to A, and every plane through A is perpen-
dicular to a. The relation between two absolute polar lines is
sytumetrical: every point on the one is perpendicular to every
point on the other, and every plane through the one is per-
pendicular to every plane through the other. Two perpen-

*Clifford [1].

128



§7.1 ABsoLUTE PoLAR LIXES ' 129

dicular planes through each of two such lines form a self-polar
tetrakedron, such that any two opposite edges are absolute
polar lines.

In any plane {or line), we have an eiliptic geometry whose
absolute polarity {or involution) is induced by the absolute {
polarity in space. Thus lengths can be measured as in §5.6§
The dikedral angles formed by two planes « and 8 cad\be
measurad as ordinary angles by taking their section by“any
plane, ~, perpendicular to the line (a, 8). The resulf'fS inde-
pendent of our choice of v, since any such plane Q&ﬂtams the
absolute polar line AR, and the angles in queSybn are equal
to the lengths of the two supplementary s;:gn}ents AB.

7.11. The angles belween two intersebiing lines are equal to
the angles between the respective absolute polar lines.

Proor. Let 1 and m be the. I'gﬁes, intersecting at D and
lying in v. Then the absolute.polar lines, I’ and m’, lie in the
absolute polar plane &, andIiitersect at the absolute pole C.
Since €D is perpendiculai™to v, the angles between 1 and m
are equal to the angleg’ ‘hatween the planes Cl and Cm, and so
are equal to the ség:ments formed by the absolute poles of
these planes, which,are the points where 1’ and m’ meet 7.

The 0r1en§ab1hty of space (§2.5) enables us to associate, in
either of two\’déﬁnite ways, the senses along each line with the
senses algiig”the abselute polar line. We can thus improve
7.11 by distinguishing the two supplementary angles formed
by the two lines. The distinction is made by considerations
«f{continuity, beginning with the case when the angle is zero.

\The resuit is as follows:

7.12. The angle between two directed intersecting lines is equal
io the angle between the correspondingly directed absolute polar
lines.

The reflection in any plane o (or in its absolute pole, Q) is

]
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defined as the harmonic homology with centre O and axial
plane w. There are two reflections which will interchange two
given points A and B, namely those in which O is the mid-
point of either segment AB. It is easy to see, as in §6.2, that
a reflection is permutable with the absolute polarity. Bin3, 2,
the product of reflections in all four faces of a self-polar tejtahedron
15 the identity. \
Corresponding to the two-dimensional ro”caf’.’iéh through
angle # about a point O in a plane «, we have a three-dimen-
sional rotation through the same angle atfoizt the line AQ,
perpendicular to . When the former ratdtion is expressed as
the product of reflections in lines OP and 0Q, the latter is the
product of reflections in the planes,{(gkp and AOQ, whose line
of intersection is the aais of thalrotation. The three-dimen-
sional rotation preserves evpr?ﬂmint on its axis, AO, and
induces a translation of lefigth # in the absolute polar kine.
This translation reducesito the identity in the special case
when #=n; the rotatién'is then the product of reflections in
two perpendicular glafies. Thus it is the same as the product
of reflections ip $#%o other planes which form with the first two
a self-polar ‘ge\txﬁhedron, and it may therefore be regarded
indifferently\as a rotation through = about either of two abso-
lute polar)ies. Any line which intersects both axes is rotated
into itSelf,
) Asin §6.4, we may define a congruent transformation either
asa point-te-point correspondence preserving distance oras a

JColtineation which is permutable with the absolute polarity.
" Any reflection or rotation is a congruent transformation, but

there are other kinds as well. The possibilities, however, are
limited by the following theorem:

7.13.  Every congruent transformation is the product of at most
Jour reflections,

PROOF. Let any given congruent transformation ¥ relate
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A toB, and let & be one of the two reflections which interchange
Aand B. Then the product ¥® leaves A invariant, and induces,
in the absolute polar plane a, a certain two-dimensional con-
gruent transformation, which, by 6.42, is a rotation about somé.
point O. Let 6 denote the corresponding three-dimensional
rotation about the line AO. Then 9, preserving{every
point of a, is either the identity or the reflection in 'a,ls\ay d.
(This follows from 3.71, since the projectivity inddeed in AO
is either the identity or the one-dimensional refléetion in A.)
Thus ¥ is either 6® or 68'®. Since 0 is the"‘p}oduct of two
reflections, ¥ is now expressed as the produet of three or four
reflections, AN

By 5.31, when a rotation is exprqs‘s’& as the preduct of two
reflections, one of the reflecting planes may be any plane
through the axis, and so can be.¢hosen to pass through a given
point, or to bhe perpendiculazite a given plane. Thus, in the
product of three reﬂections,fﬁ;e can choose the first two in such
a way that the plane of{the second is perpendicular to that of
the third. Then (if i1’1~e}3¢::ssau‘y) we can modify the second and
third so as to malﬁ{\t’he plane of the second perpendicular to
that of the first\, We now have a product ®&'®”, where both
® and & ase(permutable with . This can be expressed as
0%, wherg e rotation 8 =3 is permutable with the reflec-
tion &/, the’axis. of © being perpendicular to the plane of @’.
In ot\h&"x&rords,

7. 14 T'ke product of three reflections is a rofatory reflection.
£\

~;" Tt follows from 7.13 that any congruent transformation
which leaves no point invariant is expressible (in many ways)
as the product of four reflections, or of two rotations. We shall
see, in 7.49, that the axes of the two rotations can be chosen
50 as to be absolute polars; then the rotations are permutable,
and we are justified in calling their product a doubdle rotation.

By 3.73, a congruent transformation is direct or opposite
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according as it is the preduct of an even or odd number of
reflections. Hence

7.15. A direct congruent transformation is either a rotation or g
© double rolation, and an opposite cougruent fransformoiion gs
either a reflection or a rotalory reflection. , \\

Two figures are again said to be congruent if ong “gan be
derived from the other by a congruent transformatlgh The
congruence may be either direct or opposite (as Detween left

and right hands). N
In terms of cross ratio (4.71), the lengths of the two seg-
ments AB arc AN

arc cos (:t:\/{A]%,.}?g:}),
where e and § are the absolute poldxplanes of A and B, (Cf.
§6.71.} These are the same as. ‘the angles between a and 3,
and as such may be writtendn ‘the form

arc cogn(.;b\/{aﬁ, BA}).
The distance from thepoint A to the plane 8 is

arc cos 4/{AB, Ba} = arcsin +/{AB, .Ba}
In terms of cbq\dmates if A, B, a, B are (x), (v), [X], [V}

we have O
@7 (AB, ga} = EV X
O =X} {y ¥}
wherendw {x V] =xo ¥y 42V 4% Ve + 25V, and so on.  If
we take the absolute polarity in its canonical form, and make
tht; proper conventions for selecting one of the two supple-
"mentary lengths or angles, we deduce the following expressions

V “for the segment between points {(x) and (v}, the angle between

planes [ X] and [¥], and the distance from the point (x) to the
plane [¥]:

arc cos [xy] arc cos - I X Y}

Viwshv ]’ VIXXIV[PT)
Hav})

\/{xx}\/{ YY}

arc sin
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7.2, Clifford parallels. Some of the properties of equi-
distant lines can be obtained in quite an elementary way, by
means of the following chain of theorems.

Oy
FIG.‘F:Z':%
7.21.  The shovtest segment connecting two skew lines 4s
perpendicular to both lﬁ'ges. :

Proor, Let a’éd}b be the two skew lines. If they are
absolute polars,epePy connecting segment is perpendicular to
both, and of dehgth 4. If not, then by 6.53, the shortest
segment froni.\\aﬁy point A on a is the acute segment of the line
perpendielldr to b (which is the transversal from A to b and
its absolnte polar, b’). Considerations of continuity suffice to
sho,\’ij.\that, among such segments, there must be one or more
piithma,  If such a minimum segment AB, perpendicular to b,

Q I8 not also perpendicular to a, draw BA; perpendicular to a,
and A.B, perpendicular to b, as in Fig. 7.2a. Then

AB; < AJB<AB,
which is absurd.

7.22,  Any two Lines have ai least two common perpendicu-
lars.
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Proor. Two intersecting lines have one common perpen-
dicular in their plane, and one perpendicular to their plane at
the point of intersection. By 7.21, two skew lines have at
least one common perpendicular, AB; another is the absoluté\
polar of AB. O\

7.23. If two skew lines have more than fwo common ;s{e;}ben-
diculars, they have infinitely many, and the segments jniercepted
on these are all equal. S

N

Proor. The common perpendiculars tq @and b are trans-
versals of four lines: &, b, and their absolutapdlars. By 3.62,
if there are more than two transversalsythé four lines belong
to a regulus, and the sets of four ppi ‘fss"'intercepted are pro-

jectively related. O

Two such equidistant lines are ‘called Clifford parailels, or
“paratactics,” and the ruléh quadric generated by their
commoeon perpendiculars is‘g‘:z’illéd a rectangular Clifford surfoce.
Clearly, any two interSecting generators are perpendicular,
and any two skew generators are Clifford parallels. Thus four
generators, two from“each regulus, form a “skew rectangle,”
having opposite’sides equal, and four right angles, like a rect-
angle in the Euclidean plane.

Theoye(n_ ’3.61 provides the following sufficient condition
for Cliffesd parallelism :*

7.2{1(§Two skew Lines which have two common perpendiculars
';Q‘f equal length, are Clifford parallels. '
\m; " To construct a Clifford parallel from a point A to a linc b,t
draw AB perpendicular to b, and let the absolute polar of AB
meet b at B', asin Fig. 7.28. On this absolute polar line, take
a point A’ so that B'A’=BA. Then, by 7.24, AA’ is a Clifford

parallel to BB, By 5.11, there are two possible positions for
A’, Hence

*Coolidge [1], p. 114. tBonola [2), p. 204,
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7.25. Twe Clifford parallels to a given line can be drawn through
a given point of general position.

The two parallels reduce to one if the point lies on the line
or on its absolute polar.

N
o\

B D B}
b . %
T D
Fie. 7.28 ~N\

X

NN

A Clifford trauslation may be defined as the product of
rotations through equal angles 8 abotit two absolute polar lines.
Each rotation leaves one of ‘tl‘iéée lines pointwise invariant,
and induces a one-dimensjonal translation in the other; thus
the product induces equahiranslations in the two lines. We
proceed to investigatﬂifs effect on an arbitrary point C.

Let AA’ be the #ransversal from C to the two lines (i.e., the
perpendicular {r6m”C to either of the lines). Suppose the
Clifford translation takes AA’ to BB/, and C to D. Then the
segments AB @nd A’B’ are equal, and the line BB’ is a Clifford
paraliel \tQ\AA’. By varying ¢, we obtain an infinity of lines
BB’, whith generate a rectangular Clifford surface. The gen-
erators of the regulus that includes AA’ are permuted by the

lifford translation; the generators of the other regulus, in-
cluding AB and A’R’, are translated along themselves. Hence
I} is the point where the generator through C of this second
regulus meets BB,

Since the senses along AB and its absolute polar can be
associated in either of two ways, there are two possible posi-
tions for B’, given A, B, and A’. Hence

Q!
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7.26. For any fwo poinis A and B, there are jusi two Clifford
translations which will take A to B.

Since the point C was chosen arbitrarily, we see that a
Clifford translation of length {or angle) § moves evéry point
of space through a distance ¢ along a line which is prggcrved
by being translated along itself. Conversely, O

7.27.  Any congruent transformation which mog@{ "éf,'efy potnt
through ihe same disiance, and preserves the h'm'\wk'ick Joins each
point to its iransform, is o Clifford translatidn)

Proor. If such a congruent transf&bnﬁation takes 4 1o B,
let A’ be any point on the absolute.golar of AB, and suppose
the transformation takes A’ to B4so that A’'B’=AB. Then
the line AB is invariant; its Absélute polar, being likewise
invariant, contains B/, and igA’B’.

The invariant lines ofta Clifford translation are called its
axes; the same translation can be regarded as the product of
rotations through #about any one of them and its absolute
polar. CIearly\&zéry power of the Clifford translation has
the same axegand any two axes arc Clifford parallels.  Since
two Clifford/parallel lines whose distance apart is = are abso-
lute po!a{‘s,’

7.28, (A" Clifford transiation of length %n transforms any line
pet dicular to an axis into its absolule polar line.

N *" A Clifford translation of length =, being the product of

\m‘:" reflections in the faces of a self-polar tetrahedron, is the
identity,

7.3. The Stephanos-Cartan representation of rotations by
points. A rotation about a line ] induces, in any plane per-
pendicular to 1, a rotation through the same angle about the
point where this plane meets 1, Therefore Donkin’s Theorem
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6.63 continues to hold in three dimensions, if a rotation
through 8 about 1 is represented by a vector of length 36 along
the absolute polar line, 1. In this manner the directed sides
of any triangle DEF represent definite rotations, whose products,
is the identity. The axes of these rotations concur at :che
absolute pole, Py, of the plane DEF, ¢\

Since the senses along pairs of absolute polar lined &an be
consistently associated, the rotation through & abopt?}t may be
represented (in a different but definite manner) B2 vector of
length 36 along 1 itself, instead of along !’ Th};rarious rota-
tions 8, about lines through Py, are then represénted by vectors
P.P; along their axes, and so, finally, by péints P, such that
the length PPy is equal to half the afiglé of rotation. When
we keep the axis fixed, and increase ¥ from 0 to 2w, the point
Py starts at Py, and traverses thé\whole length of the axis. In
particular, the point Py, which represents the inverse rota-
tion §7! (i.e. the rotatioq‘{"h‘fough —0 or 2z —# about P/ Pg),
ie the image of Py by reflection in Py, Hence*

7.31. A point Py an,m;é\a doubly oriented line determine a definite
corvespondence Ege}%z}en all the points of space and all the rotations

about lines thepukh P.
AS

Py

P P_T_'

FicG. 7;3A

*Stephanos [1], pp. 344, 360; Cartan [1], p. 265.
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Consider two rotations § and 7, through angles § and ¢,
about lines P,Ps and P,P;. We seek the point Pgr which
represents their product. Let DE and EF (F ig. 7.3a) be vec-_
tors of lengths 30 and $¢ along the absolute polars of PRy
and PPy (so that E is the absolute pole of the plane PP Py
By 7.12, the angle between the vectors PP and PP is<equal
to the angle between the vectors DE and EF, which .15 the
supplement of the angle E of the triangle DEF. This triangles
DEF and PP, Py are congruent, the sides DE, £F, and angle
E of the former being equal to the corresponding sides and
angle of the fatter. By Donkin's Theoremy" Psr lies on the
absolute polar of DR, at distance DF fron?'\l%;\. Thus

P,Psy=Pg: Py

Trahsforming the rotation STby 8, we see that TS is a
rotation through the same angle® Hence

P1 PT’.S"=‘P1‘P.S T= PS-lPT.
Replacing § by -, ,\

7.32. A\ h\érs-l =P1 PS'lT =PSPT'

Thus the Zen‘g‘chfﬁsl’r is equal to half the angle of either of the
roiations TS ST,

."\"~ .
It fellews readily that both the segments PopPrp and
Pys ]}?M are congruent to PP,

7
\”‘y 7.4, Right translations and left transiations. Consider
the group of all rotations about lines through P,, and the cor-
responding set of all points of space. The effect of muitiplying
all the rotations by any one of them, say R, on the right or on
the left, is to permute the representative points according to

a certain correspondence, Ag or Ag, so that, for every point Pg,
we have

Psag =Pgg, PsAg=Pgs.
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By the remark at the end of §7.3, Az and Ag preserve the
distance between any two points, and so are congruent trans-
formations. Let us call them #ight and left iranslations. In
order to identify them with the Clifford translations defined in
§7.2, we shall apply the criterion 7.27, after establishing the
following lemma: O\

7.41.  Any line may be expressed as the locus of a point Py%s,
or of a point Pgy?, where Ps is an arbitrary point on theline, U
and V are rotations through arbitrary angles about dz_)‘?m'te axes,
and x and y vary over a sufficient range of real ﬂmg}bers.

ProoF. Since the various powers of a}{otation all have
the same axis, the general point on the liné®; Py, is Py=. Ap-
plying the right translation Ag, we deduce that the general
point on PgP, ¢ isPy=g. Similarly, the general point on PgPsy
is Pgps.  Since any line P3Py mgyibe expressed as PsPys or
as PPy, the desired result follows.

Since PiPgo=P,Py =ESPS';, Ag and Ap translate every
point Pg through the samie distance P.P;. By 7.41, theline
PSPRS 18 preserved b{iJYR, and P.S'PSR by Ag. Hence
7.42. If R is a rolation through § (about a line through P1), Ag
and Ag are Cliffoxd transiations of lengih 38, each having P1Pg
as an quxis. \

Given\iﬁﬁr:d points, Pg and Py, there is a unique left trans-
lation A%, and a unique right translation Agty, which will
tal;e\'Pg to Pr.* Hence, by 7.26, -
73:3'.’ Every Clifford translation is either a left transiation or a

}gkt transiation.
Since PsAyAy =Pysy =PsaApAy (for every point Ps),

7.44. Any left transiation is permutable with any right trans-
lation.

*Klein {31, p. 236.
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Since AUAV =AUV and AUAV =AVU9

7.45. The produci of two right (or left) translations is o right (or
left) translation.*

N\

Thus, in the language of group-theory, the class of right

(or left) translations is a continuous group, simply isomérphic
with the group of rotations about lines through P,. O

We come now to the most important theorenter Clifford

translations: A
~

7.46. Every direct congruent transformaiionds uniquely expres-

stble as the product of a lefi translation an{(g righi translition.

Proor. A rotation through 6 abeut any line whatever may
be regarded as the product of twé“efual rotations through 36
about this line and two inversewptations through 6 about the
absolute polar fine in opposité senses. It is then expressed as
the product of a left traqsi’aftion and a right translatiocs, each
of length 4. Hence, by, 7.44 and 7.45, the product of any two
rotations, being theproduct of two left and two right trans-
lations, is also t}g\ﬁro’duct of one left and one right transiation.
By 7.15, thisisthe most general direct congruent transformation.

Finally, 4f this expression were not unique, we could find
a left trafishation (other than the identity) which was also a
right tramslation, say Ag=Ar. This would imply SR =RT for
ev«:aQ\R, including R=1; hence §=T, and SR=RS. By 6.84,
this is impossible,

o N

N
h
\ )

(_ The last three theorems may be summarized in group-

theoretic terms, as follows:

7.47.  The group of all direct congruent transformaiions, being
the direct product of the group of left translations and ihe group
of right translations, is stmply isomorphic with the divect square
of tke group of all rotations about lines through a fixed point,

* *Klein [3), p. 236. :
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From the above proof of 7.46, it is seen that, when a rota-
tion through # about any line L is expressed as ApAy, the Clifford
translations Ay and Ay are of equal length 36. Therefore, by
7.42, U and V are rotations through equal angles # about two
lines through P;. The effect of replacing Uor Ay by its inverse 4
is to change the rotation through # about 1 into a rotatmq
through § about the absolute polar line. Hence PN

7.48, If U and V are rolations through equal angles alwdt two
lines through Py, then ApAy and Ap-Ay are mta}wns through
equal angles about two lines which are absolule ﬁvlars of eack
oiher.

In particular, since any R transform,sx}ny S into R7ISR,
we have R= AR"Am’ x\
for a rotation through 2P:Pg about the line P{Pg. Putting
TS *for R, and transforming By *As, we obtain the expression
AgrAgir for a rotation tl:lr(),ugh 2P P about the line PgPr.

The rotations about{bsolute polar lines (in 7.48) can be
re-combined to forn}iﬁ'l}'ﬂ’ord translations, as follows:

ApAp A3y =Ap, Apbdy(Agrap) Tt =Ap
More generally\.)

AS
7.40. Euverh Hirect congruent transformation is the product of
rotationgabout two absolute polur lines.

PliBOF Since any two rotations about lines through Py
may “be expressed as U and V¥, where U and V are rotations
thmugh equal angles, the general direct congruent trans-
formation is

Aysdyy =4y b)) (Ag2)102.

'7.5. Right parallels and left parallels, By 7.25, there are,
in general, two Clifford parallels to a given line through a given
point. These may be distinguished as follows. Two lines



N
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which occur among the axes of a right (or left) translation are
said to be right (or left) parallels. It follows at once that
right (or left) parallelism is transitive, and that two lines which
are both right and left parallels must be absolute polars.

P, 7,

Fiz, 7.5;\”'\’ 4

If U and ¥ are any two rbtdtions about distinct lines
through Py, the skew quadranglg PP, P, Py, is called 2 Clifford
parallelogram * (See Fig. ZBA) The opposite sides P1Py; and
PyPyy, being axes of Apyare left parallels; the opposite sides
P\Py and PP, beiilg axes of Ay, are right parallels. The
former two opposige}ides are both of length half the angle of
the rotation U, and the latter two are both of length haif the
angleof ¥. Since Ay takes PPy, to PPy, and translates PPy
along itselfi¢the external angle at Py, is equal to the internal
angle at,ijf Proceeding similarly with Ay, we see that the four
integial dngles are equal or supplementary, just like those of
a Eunclidean parallelogram; their sum js exactly 2x. For
,\sﬁi;’hplicity, we have taken one vertex at Py; but similar

\“esults evidently hold for the general Clifford parallelogram

" N
PsPysPysyPsy. Since Ay translates the line P.Pgy to

PysPysy, while Ay translates PsPys to Pgy Pygy, we have

7.31.  Two lines whick are derived from one another by a left (or
reght) translation are right (or left) parallels.

*Klein [3], p. 235,
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It is now clear that the problem of representing the product
of two given rotations (§7.3) amounts to completing a Clifford
parallelogram. Fig. 7.58 indicates the representative points
of three rotations R, §, T whose product is the identity {so that ,
the inverse of each is the product of the other two, in cyclie
order}. Six Clifford parallelograms are easily picked outi{ )

PRS - ) PR - L 3 y )

Ps Pra

“Pr AP, P Py

Fi¢. 7.58 N FiG. 7.5¢C

E Y

Psr

The following theorem eﬁébies us to define a generalization
of the surface considered’in §7.2:

7.52. Given any twoi;irhersecting lines, the left parallel to one
through any point (bﬂ\tke other meets the vight parallel to the latier
through any peindof the former, so as to form a Clifford paral-
lelogram. 2&J
PROQF{;.\Since any point Pg can be translated (by Ag+ or
Agt) ta Py there is no loss of generality in taking the two inter-
secﬂﬁko}ines to be PiPy and P\Py, as in Fig. 7.5c. Then Py
is 'tl’he' general point of the former, and Pyy of the latter. The
_point Pyaps lies on both the left parallel to P,Py; through Py
and the right parallel to P\P}, through Pye.

The quadric generated by the above systems of lines is
called a Clifford surface.* Given three parallel lines and a
transversal, we can apply 7.52 and obtain

*Sommerviile [2], pp. 105-114,
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7.53.  The guadric determined by any three left (or right) paral-
lels s @ Clifford surface.

Clearly, any two left parallel generators and any two ri ght
parallel generators form a Clifford parallelogram of angla
¥v=<LPyP,Py. By a famous theorem of Gauss, the Atolal
curvature” of a geodesic polygon on any surface is gn\éﬁsz}red
by its angular excess (as compared with a Euclideanvpolvgon
of the same number of sides). Since a Clifford sdrface is cov-
ered with a network of Clifford parallelogram:i'{s{s' small as we
please, it follows that this surface has zerd{curvature every-
where, which means that it can be mappgd without distortion
on a suitable region of the Euclidean plawe.* (This will be secn
mare clearly in §13.8) To put the’hatter picturesquely, a
small creature whose world was 4 Clifford surface would find
his practical geometry to be Buclidean, until he explored so
far as to discover that his ,‘.‘ﬁét'earth” was finite (though un-
bounded). In other wordg} after cutting the Clifford surface
along any two intersecting generators, we can “develop™ it on
the Euclidean planeyjust as we can unroll a cylinder. The
Clifford parallelégrams will then become ordinary paraliielo-
grams, and the\whole surface will appear as the interior of a
rhombus of sider and angley. (Thusits total area is 2 sin @)

The gg‘neral point of the Clifford surface being Pgaps, the
numbers and y serve as intrinsic coordinates, which resemble
afﬁpe\ Oordinates in the Euclidean plane, save that they are
petiodic (since every generator is of length 7). Along each of

(‘the right parallei generators, x is constant; and along each of

W

‘the left parallel generators, ¥ is constant. Linear equations
involving both x and v define curves called geodesics, which
develop into straight lines. If U and V are rotations through
angles # and ¢, we have

P Py-=1sg, P;Pw=§¢y.

*Klein [3], pp. 243-247.
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The coordinates x and y will be proportional to actual distances
(like oblique Cartesian coordinates) if we choose the points
Py and Py to be equidistant from Py, sothat9=4¢. Inthiscase .
the surface, consisting of points Py=yy, is preserved by every
power of either of the rotations 4,4y and Agdy. Hence(),

. . .o (\Y ©
7.54, A Clifford surface is a surface of revolution in two distinct
ways. N

It follows that the geodesics x— ¥ =¢are circle,é(%f the same
radius for all values of ¢), and likewise the geddesics x+y=c.
When the surface is developed on the Eyelidean plane, two
such circles, one of each kind, appeag;“\éis diagonals of the
rhombus. Hence, by Euclidean trigonometry, their circum-
ferences are 2w sin 3y and 27 cos 3¢ In the special case of a
rectangular Clifford surface, the shdmbus is a square, and the
circles are equal. . &Y

If we had taken the two intersecting lines of 7.52+t0 be PP,
and PsPgy, the general peint of the Clifford surface would have
been Py gy (and the diigle ¢ = LPysPsPsy= LPsi P Py).
The loci of points Phs s for various values of 2 are a family
of “‘coaxal” Cliff@id surfacés. The numbers %, ¥, 5 could be
used as coordindtes for the whole elliptic space.

A Cliffoz’g‘i;s[lrface, being closed and uniform like a sphere,
developalile Tike a cylinder, and ring-shaped like a torus, is
not eagy™o visualize. Unlike a sphere, it has zero curvature;
more@ver, in the rectangular case, its “inside” and Youtside
&ré..}:ongruent. Unlike a cylinder, it is finite, and has two

ystems of generating lines.  Unlike a torus, it has two systems
of circles which are both of constant radius.*

*A treatment closely resembling the above $§7.3-7.5 was worked out
independently by W. 5. Morris (The Geometry of the Rolation Group,
Princeton Junior Paper, 1936) under the direction of Profcssor AW,
Tucker. Morris considers the abstract space whose "‘points’ are rotations
about a point in ordinary space. He defines the “motions” of this space

10
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7.6. Study’s representation of lines by pairs of points.
Any line determines a unique pair of lines through the arbi-
trary fixed point P;: one left parallel and one right parallel.
These meet the absolute polar plane of P, in a definite paitho
“representative’” points. Any other line represented, by the
same pair of points (in the same order) is both left @nd Tight
parallel to the first line, and so can only be the abdptute polar
line. Clearly, point-pairs such as (A, B} and (A~:Dj represent
left parallel lines, while pairs such as (A, D)“a}}c\i (C, D) repre-
sent right paralle]l lines. In particular, (AMA) represents the
line P:A (and its absolute polar). /) /

A\
761, If Uand Varerolationsihtough v about lines through
Py, AyAy is the rotation through « about either of the lines repre-
senled by the poini-pair (Py, Pv)

Proor. The two a‘bs'{;l'ute polar lines represented by
{(Py, Py), being left parallel to P,Py, and right parallel to P Py,
are axes of both the/€lifford translations Ay and A, Thereiore
either of them ca@e}egarded as the axis of the rotation A, Ay

7.62. The.general direct congruent transformation Ay is
represenied\by independent rotations S~ and T, applied respec-
tz’weiy.t”({ 'Pke Jirst and second representative points of a line.*

A’thOF. AsAp transforms the rotation AjAy into

R\ ¢ ¢ T oAy (AsAr) =AsApAs AriAyA L = A gy siAriyr

to be the transformations that we have called AyAy, the “lines” to be the
one-dimensional subgroups V¥ (V fixed) and their cosets ST (cf. 7.41),
the “distance” from S to T to be proportional to the angle of the rotation
ST (cf. 7.32), the ““polar planc” of S to be the class of rotations T for
which 5™ T'is of angle #, and a "‘Clifford surface™ to be the product of two
one-dimensional subgroups. He shows that these definitions are con-

sis.tent, and that the properties of the space so-constructed are those of
elliptic space.

*Study [1], pp. 121-123,



$7.6 POINT-PAIRS REPRESENTING LINES 147

and thus replaces the point-pair (Py, Py) by (Psys, Priyy).

7.63. A mecessary and sufficient condition for twe lines,
represented by poini-pairs (A, B) and (C, D), to be either inter-
secting or perpendicular, is AC =BD.

Proor. If the two lines intersect at an angle Y( < in) cthe,
respective left parallels through P; make this same anglé,and
therefore AC=¢. Similarly, BD=y. If, on the other hand,
the two lines are perpendicular (i.e. conjugate in ‘thé absolute
polarity), one intersects the absolute polar of, the Gther, and
again AC=BD. Conversely, if we are given WG BD, we can
finrd a two-dimensional rotation (in the absolute polar plane
of P) which takes A to B, and C to D, {Let T be the corres-
ponding three-dimensional rotation (abolt a iine through P,).
By 7.62, a right translation affects the second representative
point alone. Thus Ay transforvnls:t'he point-pairs (A, A} and
(C, C), which represent lines t}}mﬁgh Py, into (A, B) and (C, D).

In the above theorenynthe word “perpendicular” is used
in a wider sense than:wi‘gx 7.22, where the “common perpen-
diculars” of two lifids"Were understood to intersect the two
lines, If lines represented by (A, B) and (E, F) are perpen-
dicular in thig.\’s’tricter sense, we have AE=BF=1r. Hence

7.64. If jsu:}}mn«pamllel lines are represented by point-pairs
(A, B) 40d)(C, D), their iwo common perpendiculars are repre-
semefz'a;'cﬁetker by (E, F) where E and ¥ are the absolute poles of
theldines AC and BD (in the plane of the representation).
“\"The bundle of lines through P, is represented by all pairs of
coincident points (A, A). Applying Ay, we deduce that the
bundle of lines through any point P is represented by ail pairs
(A, AT), where A is arbitrary. In other words, the point Pris
represented by the rotation T. In this sense, Study’s repre-
sentation is just the inverse of the Stephanos-Cartan repre-
sentation.
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By 7.54, the reguli of a Clifford surface are the loci of two
intersecting lines, say 1 and r, by continuous rotation about
either of the two lines which are left parallel to 1 and right
parallel to r. Suppose that 1 and r are represented by (A, B)
and (C, D), where AC=BD =y. Then the two axes of rotatibn
are represented together by (A, D). Thus the Clifford.4urface
is represented by two equal circles, with centres D and A, in
the following manner. The left parallel generatpz:é. are repre-
sented by point-pairs (A, B), where A is fixed dand B describes
the circle with centre D and radius ¥; andrthe right parallel
generators by point-pairs (C, D), where G\déscribes the circle
with centre A and the same radius. 0\

In the special case when ¥ = 14, thé’circles reduce to lines.
In every other case, a second Clifferdvsurface, whose generators
are the absolute polars of thosk of the first, is automatically
represented at the same tinﬁé.’ "Both surfaces belong to the
coaxal system which is ohféined by varying ¢ while keeping A
and D fixed. If ¢ =AD, 3ne of the surfaces passes through Py,

Three left paralieMlines, represented by (A, B), (a, C),
(A, D), determine a/Clifford surface which is represented by
the circle BCD]& an equal circle with centre A. (Ci, 7.53.)

7.7. Blifford translations and quaternions. Let us choose
our cangpical coordinate system so that the point P, is
(1,.&@;‘0). A rotatien about a line through (1, 0, ¢, 0) induces,
in,jt% perpendicular plane x,=0, a rotation through the same

o~angle about the point where this plane meets the line. By

4 \ ~6.85, if this point is (0, z,, %3, 73), where _zi +z +z§=1, such a

rotation §, through angle 4, leaves %y unchanged, and trans-

forms x4, %y, x5 according to the formula

xd ey f ik =z it agi s k)s,

where

7.71. §=c0s 384 (z1it+zj+2, k) sin 30,

In other words, the rotation through ¢ about the line
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7.72. Bon_ 5
21 Ba Bz
is given by the transformation
x;+x;i+x;j+x;k=s“‘(xn +xid b xaftask)s,
or, in brief, O\
7.73. ¥ =s7lys, O’
We naturally call s the quaternion of the rotation, nbservmg
that quaternions combine by multiplication in the game manner
as the corresponding rotations. ~~\
The Stephanos-Cartan representative pomt PS, distant 4
from (1, 0, 8, 0) along the line 7.72, is o\
{cos 48, zysin 18, z;sin’ 59,\23 sin 18),
These coordinates being the constitients of s, we have

7.74.  The poini (s) represents. ,t’hé rolation whose quaternion
is 8. W

For a given point (s), .there are {wo quaternions of unit
norm: £8/4/ [ss} These correspond to values of # which
differ by 2x, and so give essentiaily the same rotation.

If © and v areithe’quaternions of rotations U and V, the
effect of multiplping all rotations on the left by U, and on the
right by V, isZto“multiply the corresponding quaternions on
the left by, Q and on the right by v. Thus the transformation
AUQV IS*“\~

735, AN ¥ =uxv.
In partmular, the Clifford translaticns Ay and Ay are, respec-
\\tfvély, ¥=us, ¥=xv,
or or

%9 =o'y~ Usdy —Uaks —Uskz, | ¥h=0gke—v1X1—s¥s —Dsxs,
x1=tx%oFtoXy — UskaFtaky, | X] =30 001 +axs — veks,

=tokq-tax, Faoxg — 212y, x} =¥ag —¥s%1 -+ Toky +vixs,
X3 =1axg— a1 F ke Freeks, | X5 =0sxg-Hvu, —vyxs +opxs,

*Cayley [2], p. 812
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By 6.86 (with x, for &3, and then x, for x,), the product of
rotations through given angles # and ¢ about two opposite
edges of the tetrahedron of reference is*

Xi=%q cO8 f—x; 8in 8, | %5 =2x2 COS $—x, sin &,

x]=2%p sin 8+x; cos 6, | x;=x2 sin ¢+x; cos LN
(Cf.7.49.) This may be expressed in the form 7.75 by\taking
U and ¥ to be rotations through respective angles ¢ ¢ about
the line xy =2, =0, so that W\ )

uxv:(cosg-_-g—q" + isin 3__42‘_‘35) (xp+x1d +xrf.}';s k)

o5t + 10t
= (cos 8+i sin 8) (xo+x1i}+((;0§{}+ isin ¢)(xsftxa k)
= (%0 cos §—x1 sin ) +(x, sind+x; cos 6) i
+(xs cos qb—x@éi'n &)+ (xssin ¢4xxcos é) B,
By 7.46, 7.75 is the ge{lefaif direct transformation of elliptic
space. To obtain the gepéral opposite transformation, it is
sufficient to combine{this with a particular opposite trans-
formation, such ag the reflection in x=0, which merely re-
verses the sign 0%, Hence

¢\ I.

7.76. The ge’néml congruent iransformation {(direct or opposite
afcofdfn a;s we tlake the upper or lower sign for xo) is
T +agd b, jtas k=
(#El%@'l’ +u&i+u3k)(ixu+x1i+xzj+xs k) (votuiitoaf +03k)-
\j AS i‘t" §4-6,. we define the Pliicker coordinates of the line
s JHnmng two points = -
\ 9, I (y)gis derlijved frgt)l 22231 153}? :’gpf:;farmma ity both
| g Ay, we multiply both
sides of the equation 124 =y on the right by #g~—xi—x:5 — %3 R,
obtaining (wo-+uri+usj-+ua k) (ol +a? +x2 +a)
={otyi+y.i+ys kY(xo—x1d —x05 —xs k)
:(xoyn+x1y1+xzyz+xays}+(}'701 +paa)i
+(P02+Pal)j+(Pua +p1) k.
*Goursat [1], p. 36.
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If, on the other hand, () is derived from (x) by applying Ay,
the equation & v =y gives similarly
{xx} Wotv1i+oef+ua k)

= {ay} +(Por—Prs) i+ (Por—psr) FH{Pos— pua)don
Comparing the coefficients of 4, #, k, we deduce that thexa\xes

of Ay and Ay form the linear congruences PR
Portpun _ Portpa _ Pt AN :
7.77. 2 s TN
Pon—Pe _ Dee—Pn Pus“?lﬁ‘>\
1 N (] \ '
Hence* ' \

7.78. A necessary and sufficient can?htwn Jor two lines to be
left (or right) parallel is that the sims (or differences) of comple-
mentary Plicker coordinates fqrf}om line be proporiienal fo the
corresponding sums (or dz:ffe{e}ncbs) for the other.

7.8. Study's coordinates for a line. The linear congru-
ences 7,77 are elhp}sé\ in the sense of p. 93, since there is just
one axis throug eich point of space. If a line {p} belongs
to both of them its left and right parallels through (1, 0, 0, 0)

are {ﬂl, H'J, g, 0 0 0] and {?J_l, Uz, 3, 0 0 0}
theref,o{e}he points of Study's representative pair are
7-8{-\\“ (Op 1, ¥, u:i)! (Ol U1y Vs, ”3)‘

,Simce the coordinates are homogeneous, we may write

201 =P+ P13, 2Ua=pozt P, 2 =Pzt P12,
20y =pu—pus 22=pu—pu, 2s=pu—7pi,
whence _
Pu=ui14+v1, Poz=uo+vs, Puz=us+Vvs,

Pu=H1—t, fa=ts—¥s Prz=u;— .

*Coolidge [1], p. 125.

7.82.
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The line is specified by its "'Study coordinates”* u,, u,, %3,
1, 92, 3, just as well as by its Plitcker coordinates Pu. Wethen

speak of “the line {u; }.” The identical relation 4.62 is re-
placed by

2 2 2 a 2 2
7.83. Uty tu; =v 4o, +vl, A
and the condition 4.63 for two lines to intersect becomg’s“x
/ 4 ? ! ! ! N
7.84. ity Fgus +ugng =v “Foavs +ugus. "

By 4.74, the absolute polar of fuiv} is {u; —v},awhich clearly
has the same representative point-pair. qu»h)qés {u; v} and
{u’;v"} are perpendicular (without necessanily Intersecting) if

one intersects the absolute polar of the gther, i.e. if
st T4tttz sty +av) sy Ly =0,
These results resemble 7.63, but ateslightly stronger in that
they distinguish between intersegtion and perpendicularity.
By 7.78, two lines are le;gfjﬁa'rallel if their «'s are propor-
tional, and right parailel if .their v's are proportional. Since

the line {u; v} is represerted by the point-pair 7.81, 7.62 implies
the following theorgq’r:,\

&
7.85. Adsa transfbmah'on of Study coordinaies, Ashy is

G ik = s(uri-Fusf +usk)s ™,

"‘\i'Jii ‘s tusk=¢"1(y,0+ v2f - vk},

w}zere{@}ﬁi t ore the gualernions of the rotations § and T.
™\

30 illustrate the use of these coordinates, let us apply them

. to,a Clifford surface, We saw, at the end of §7.6, that the

\ right parallel generators of a Clifford surface of angle ¢ are

represented by a circle of radius ¥ and centre A, paired with a

fixed point D. By applying suitable left and right translations,

we can make A and D coincide at 0,1, 0, 0). By #6.79, a
typical point of the circle is then

*Study 11), p. 119,
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(0, cos ¥, us, 13), where u; 413 =sin? .
Hence a typical generator (of the right parallel regulus) is
{cos ¢, ma, us; 1,0, 0).
By 7 82, the same line in Pliicker coordinates is

{2 cos® 3y, us, us, —2 sin? 4y, us, 4. O\
Comparing this with 4.81, we see that ¢y=—tan? jy~and
ca=c3=1. Thus the Clifford surface is ~\ by
— (%3 +=}) tan® §y +x; +x; =0, ;
or (xo?+2.2} sin? 3¢ = (x:2 +xs?) cost %;te,
or* AY,
7.86, xygtat—x—xh= {xx]“te’sy.

In particular, the rectangular Cliﬁbré surface is simply

xﬁ +x1 _3’2 +xs

7.9. Complex space. When the real projective space of
elliptic geometry is regarded as a subspace of complex projec-
tive space, the lecus ef self-perpendicular points and the en-
velope of self-per ndrcular planes is a quadric, cailed the
Absolute, Kleins, formulae for distance and dihedral anglet
are precisely afaidgous to his formulae for distance and angle
in the plan’e\’(‘§6.9).

A cofigrdent transformation, being a collineation which
preseryes the Absolute, either preserves each of the two reguli
or mterchanges them. Consider, in particular, a reflection.
~Let 'L be the point where the reflecting plane meets an arbi-

\tl'ﬂry generator 1. Since L reflects into itself, the reflected
generator I’ passes through L. Thus | and I intersect, and
belong to different reguli. Hence a reflection interchanges the
two reguli, and, by 7.15,

*Klein [3_1. p. 241,
tKlein [13, p. 621.



154 ELL1PTIc GEOMETRY

7.91. A congruent trinsformation is direct or opposite, according
as it preserves each regulus of the Absolute, or interchanges the
two reguli.

Since there are no real points on the Absolute, its gener~\
ators are imaginary lines of the second kind,* and og(.;@r\ in
conjugate imaginary pairs which, being skew, belong-to ‘6ne
regulus. Any real line meets the Absolute in tw;ojpﬁ'njugate
imaginary points, and the two generators throughfon‘é of these
points are conjugate imaginary to the two gen;érétors through
the other. Thus any real line which meets.a particular gener-
ator also meets the conjugate imaginary\generator.

7

‘..‘\“
_{ | / & / ’f
k 74 I N

N4
O
&
7.92.  Twoveal lines which meet the same generator of the
Absolute are Clifford parallels.t

Fic. 7.9a

PRQQ;?.\ Let KL and MN be two real lines which meet
bot{x{the conjugate imaginary generators KM and LN. Since
geherators are self-polar, the respective polar lines XL/ and

L (M'N’ will meet the same generators, as in Fig. 7.9a. Now,
) the polar planes of K, M, K/, M’ are KK’L’, MM'N’, K'’KL,
M'MN, which meet LN in L', N’, L, N, respectively. Hence
KMX'M zLUNLN;LNLN,
and, by 3.61 and 7.23, KL and MN are Clifford parallels.

*Klein [3], p. 79; Robinson {11, p. 147,
tKlein [8], p. 234; Study [1}, p. 133.



\ )

§7.9 (GENERATORS OF THE ABSOLUTE 153

This theorem enables us to recognize each pair of conjugate
imaginary generators as the directrices of a linear congruence
of left or right parallels. Accordingly, Study distinguishes the
two reguli as consisting of left and right generators, res
tively. The opposite convention would perhaps be ziore
natural, since the leff generators (which intersect all pight
generators) belong to every congruence of right parall‘els. and
vice versa. ~\

7.93. 4 real collineation which preserves eq:k right (or left)
generator is o left (or right) translation. \

Proor. Since such a collineation preServes the Absolute,
it 1s a congruent transformation, i;(fact (by 7.91) a direct
congruent transformation. It tpahsforms the left {(or right)
gencrators according to a certam projectivity having two self-
corresponding elements. Thene are thus two conjugate imag-
inary left {or right) generators of which every peint is invar-
iant. The Clifford parafiels which are transversals of these
two generators are {ensequently invariant, and the trans-
formation is a lef {or right) translation having these trans-
versals for axes\ '

Theorem 7292 suggests the possihility of defining a Clifford
surface vnthout mentioning parallels. This can be done by
means. Qf .53. The result is as follows:*

7. 94\\ “A real guadric whick has four generators in common with
zk@.Absqute is Q@ Chfford surface.

~In other words, a Clifford surface may be defined as a real
quadric which has quadruple contact with the Absolute.
Comparison with 6.92 emphasizes the analogy between a circle
and a Clifford surface, though a more obvious analogue of the
circle is a sphere (which can be shown to have “ring contact”
with the Absolute).

*Klein [3], p. 241.
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To close this chapter, let us express some of the above
results in terms of coordinates.

The Absolute, being the locus of seff-perpendicular points,
has the equation {xx} =0, or O

xy+ax; +ai+xl=0. OV

To obtain the generators, it is easiest to use Study coordinatés.
Since the polar line of {u; v} is fu;—v}, or | vuigi'} ~a self-
polar line has either vanishing 2's or vanishing s Thus the

generators are “\ &
{61, #2, £350,0,0} and {0,0,0; pypsrps).
where, by 7.83, o\

pitos+05=0.8"

Siance {p; 0} belongs to every cpﬁérfience of right parallels,
and {0; p] to every congruence’of left parallels, these are left
and right generators, respecti¥fely. The same lines in Pliicker
coordinates are N\
{pr, Paps, £ p1 s, Lps),

in agreement with §4.3 {which is valid in complex space with-

out any restrictipn\on the signs of ¢, ¢3, c3).

The Cliffordhsurface 7.86 meets the Absolute where
O 24l =x:4x5=0.
This locu‘s;})eing the intersection of the planes xo=ix, =0 with
the ?l%\h‘e’s ¥1:=£2x3 =0, consists of four lines
o {01, 40,1, 4, {0,1, 4,0, —1, 74},

A0 agreement with 7.94.

\‘;



“where « is a real constant depending on the unit of length.

CHAPTER VIII
DESCRIPTIVE GEOMETRY

8.1. Klein’s projective model for hyperbolic geometryT
The two chief ways of approaching non-Euclidean gepimetry
are that of Gauss, Lobatschewsky, Bolyai, and Riemgnn, who
began with Euclidean geometry and modified the. postulates,
and that of Cayley and Klein, who began vm:h projective
geometry and singled out a polarity. m\

In Klein's treatment, two lines are perpeizdémlar if they
are conjugate in the absolute po]anty “and the geometry is
elliptic or hyperbolic according to th'e\rrature of this polarity.
We have considered the elliptic gage’exhaustively in the pre-
ceding three chapters; the null\ polarity is easily seen to be
unsuitable. Setting these aslde, we are left with a polarity of
the kind that determmega,comc or quadric: “the Absolute.”
If we accept Postulate ‘IV (§1.1), which rules out the possibility
of self-perpendiculasilines, we find that the Absolute cannot
be a ruled quadfié, snd we are led to consider points interior
to a conic in t}r;blane, or to an oval quadric in space.*

Defining(d congruent transformation as a collineation which
preserves\ih’e Absolute, Klein showed, as in §5.8, that if aline
AB me@ts'the Absolute at M and N, then the lengtk AB is given
by £he formula

\ AB_ [AB, MN} ,

Taking « to be positive, we find that this formula makes AB
positive or negative according as AM {| BN or AN || BM. In
either case the disiance AB is

*Vebhlen and Young (2}, 11, pp. 350-370.
157
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| log {AB, MN} I

In particular, AM = ; so we speak of the points on the
Absolute as points at tnfinily.

Q"

FIQZ’S’JA;

XY

We easily see that thi$:gebmetry of the interior of a conic
or quadric has afi the/properties of Lobatschewsky’s “imagi-
nary geometry.” GQnsider, for instance, a flat pencil with
centre A, and a {ife"q in the same plane, as in Figs. 1.24 and
8.1A. The pasallels p and p’ join A to the points at infinity
on q, and diyide the pencil into two parts., The “second’” part
consists of lities which meet q outside the Absolute, so that,
from théstandpoint of hyperbolic geometry, they do not meet

q atﬁl{
. ‘T e tdeal points, on and exterior to the Absolute, will be
ofound very useful; e.g. the polar of an exterior point is the
<\3 ‘common perpendicular of any two lines through it. But since
all the ordinary points of hyperbolic geometry are interior to
the absolute, it is by no means obvious that these other points
can still be defined when We approach hyperbolie geometry in
the classical manner, as a modification of Euclidean geometry.
Klein indicated a method for achieving this extension of hyper-
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bolic space. The details were worked out by Pasch. The
adjunction of points at infinity to affine or Euclidean space
appears as a special case.

It is natural enough that metrical notions are irrelevant,
What is more startling is that nothing need be said as to the
number of lines, parallel to a given line, that can be draw’ns\
through =z given point. We are thus dealing with a more gg'n‘-".
eral geometry, which includes both Euclidean and hyp@::bnlic.

<

8.2. Geometry in a convex region. When we déscribed
real projective geometry as “What can be dongwith an un-
graduated straight edge,” we ignored the praetical difficulty
that a complicated construction is apt to in%6lve pairs of lines
whose desired peint of intersection is outs’i& the sheet of paper
we are using.® We can take account:éf ‘this familiar trouble
by asking what becomes of real prdiéctive geometry when we
restrict consideration to a convex¥egion (i.e. to a region which
does not include the whole of Ay line but includes the whole
of one of the two segments determined by any two points
within it). The only z}z{ir}ms that are violated are 2.115 and
2.117. (Two lines, ok #wo planes, are said not to meet at all
if they do not meet within the chosen region.) The resulting
descripiive geothetry is of theoretical as well as practical inter-
est, since theslgss of the principle of duality is compensated by
the fact tHat two points now determine a unique segment.
Conseggé}itly the relations of incidence and separation, instead
of beirg undefined, are both expressible in terms of the single

é“l‘a;tién of “three point” order, or intermediacy. In fact, the
coflinearity of three points is tested by seeing whether one of
them lics between the other two, just as in practical surveying,

The name “deseriptive geometry,” which comnionly refers
to something quite different (namely, the technique of repre-

*Rebinsen [1], p. 68.
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senting a solid figure by projections on planes), was adopted
by Russell and Whitehead as a convenient abbreviation for
“the geometry of serial order.” As we have just seen, the
suggestion of practical applicability may well be carried over
from the other meaning. ~\
A set of axioms for descriptive geometry will be giver'in
$8.3. The geometry of a convex region then serves as@wiodel.
But the variety of possible convex regions shows thiap descrip-
tive geometry is not categorical; in other words, it¥sstrictly not
one geometry but a family of geometries, Th\c f;w-o most useful
regions (in the two-dimensional case) are théWhrterior of a conic,
and the whole projective plane with the exteption of one line;
these give hyperbolic geomeiry anc[,a\ﬁine geometry, respec-
tively. But there are other posgib}lfties. For instance, we
might use a triangular region and the corresponding trilinear
polarity; however, the metsigal properties are then quite
bizarre, as perpendicularii;yli,é 1o longer a symmetric relation.
Descriptive geometry,, being high school geometry with
congruence and parallelism left out, is more familiar than
projective geometry,> It is therefore interesting that the
former provide Q anodel for the latter, as well as vice versa.
In fact, this hz%pens in two distinct ways. We shall see in
§8.5 that thedines and planes through a point in descriptive
space forthya model for the points and lines in the real projec-
tive .p}‘a‘}ré. More generally, the lines and planes through a
polnb.in #-dimensional descriptive space form a model for the
BBints and lines in real projective (n—1)-space. Secondly, fol-

‘Q'],’E)'Wing Klein’s suggestion as elaborated by Pasch, we shall see
)™ In §88.6-8.8 that certain classes of lines and planes in descrip-

.tiVe space form a model for the points and lines in real pro-
Jective space of the same number of dimensions. In effect this
means that, given a descriptive space, we can construct a

projective space of which the descriptive space is a part,
namely a convex region,
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‘8.3, Veblen’s axioms of order. Afrer giving a sufficient
set of axioms for descriptive geometry, we shall save space by
omitting most of the conscquent elementary theorems, as they
are intuitively obvicus and have been elegantly proved else-
where *

In Veblen's treatment there is one undefined entity, @,
point, and one undefined relation, infermediacy. Following
Forder, we use the symbol [ABC] to express this relation\in"the
form ‘B lies between A and C” or ‘‘the three points A~,fB,"C are
in the order ABC." &

AXIOMS FOR DESCRIPTIVE GEQ\M];ZTRY

8.311. There are al least two points, L™

8.312. [f Aand B are two points, theseas at least one point C
such that [ABC). o\ &

8.313. If{ABC], then A and Clave distinct.

8.314. I [ABC), then [CBALDuZ not [BCA]

If A and B are any two poiilts, the segment AB is the class
of points X such that [AXB], the halfline or ray A/B is the

class of points Y sucleﬁa{ [BAY], the interval AB consists of
the segment AB togethér with its end-points A and B, and the

line AB consists oftlic interval AB together with the rays A/B
and B/A, as in.{‘ig. 8.3a. Theray A/Bissaid to emanate from
A. Points ardsaid to lie o7 a segment, ray, interval, or line,
if they 12 g to the respective class. Several other words,
such as sollinear, will be used in the same sense as in §2.1.

RS
QY ... A/BT s AB_, B/A
Y 4 X B
FIG. 8.3a

8.315. 77 C and D are two points on the line AB, then A is
ot the line CD.

*Veblen (1], pp. 353-370.
11
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8.316. There is at least one point not on the line AB.

8.317. If A, B, C are three non-collinear poinis, and D and
E are suck that [BCD) and [CEA], then there is ¢ poini F on the
line DE with [AFB]. (See Fig. 8.84.)

If A, B, C are non-collinear, the plane ABC is the class af
pomts collinear with pairs of points on the intervals B,C\, CA,
AB. It can be deduced* that the plane contams (the line
joining any two of its points.

8.318. There is al least one point not in the ;glafw ABC,

8.319. Two planes which have one com{}on point have
another.

8.32. For every partition of all the, pbmts of a line inio lwe
non-vacuous sels, such that no pom.{ fb‘ either lies between o
poinis of the other, there is a poink of one set which lies belween
every other point of thai set and geery point of the other set,

This last axiemt dlffers f'rom 2.13 only in the substitution
of “line” for “segment.’* $There would be no harm in using
2.13 itself, although wé could not conversely use 8.32 in pro-
jective geometry (Wh}re it would be meaningless).

\\

8.4. Ordérin apencil. A convex region is slightly easier
to define Jndescriptive geometry than in projective; in fact
it is simiply a set of points which includes the whole of the

segmént bounded by any two points within it. In particular,
gegihents and rays are convex regions.

A “For any three collinear points A, B, C, we have cither

[ABC] or [BCA] or [CAB]. In the first two cases we say that
B and C are on the same side of A (on the line considercd), and
in the third case that they are on opposite sides of A. Thus the
points on either side of A form a ray emanating from A. Two
such rays {which are **halves of one line") are said to be supple-

*Veblen [13, p. 360; Forder [1], p. 59.
tDedekind [1], §3. :
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mentary.  Analogously,* if a is any line through A, and a any
plane through a, then a divides the rest of « into two convex
regions called supplementary kalf-planes. Points B and C are
said to be on the same side of a (in «) if they belong to the
same half-plane, i.e. if the segment BC contains no point of a.¢
Again the plane e divides the rest of space into two conyex
regions called supplementary half-spaces, which detesmme
whether two points are on the same side of a or on opposme
sides.

Two rays a,, by, emanating from a point O&Qbeng w1th O
itself, are said to form the angle a;by. Anothégray x,, eman-
ating from O in the same plane, is said to{xe within the angle
aiby, or between a; and by, if and on Y\E there are points
A, B, X, on a,, by, x3, with [AXB]. Rhere is a precisely analo-
gous condition for a half-plane to II&.WI’Chln the dikedral angle
2181, where g and 8, are two haif«-planes bounded by a common
line. oW

~

s’§ Fra, 8.4a

Let a; and a: denote the two rays into which a point Q

\ leldes a'line & (through O). Then two lincs a and b through
O divide the rest of the plane into four convex regionst hounded
by the angles aib), bias, ashs, bsai. A ray ¢; within the angle
aby divides it into two angles aicy, ¢:1by, and the supplementary

*Forder [1], p. 65.
tVeblen {1), p. 365; Forder [1], p, 82.
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ray c effects a corresponding division of asbs, In this manner
we see that # coplanar lines through O divide the rest of the
plane into 2z convex regions. In particular, the notation
a. b, ¢, d can be assigned to four concurrent and coplanar lines,
in such a way that the eight regions are bounded by the angles
aiCy, C1by, bydy, dias, ascs, cobs, buds, dsay, .\:\
as in Fig. 8.4A. We then say that a and b separate ¢"and™d,
writing N

ol
N

ab || cd. o\

"
The separation a8 || vé for four coaxial plangs xan bc defined
in an analogous manner, sirnce # coaxial pﬂj des divide the rest
of space into 2x# convex regions boundéd\ v dikedral angles.

8.5. The geometry of lines .a'nd planes through a fized
point. The following definitioiwill be needed soon. A iri-
hedron consists of three cqﬁg&ﬁrrent but nen-coplanar lines
a, b, ¢ (its edges) and theirjdining planes bc, ca, ab (its faces).

In §2.2 we asserted that the “third model’” for real pro-
jective geometry cad be set up in Euclidean or non-Euclidean
space. More geﬁe}zﬁly, it can be sct up in descriptive space.
This is proved {mydetail by taking the axioms of real projective
geometry intwo dimensions, namely 2.111-2.114, 2.31, 2.32,
2.121-2.126;2.13, and translating them into provable theorems
in the}g'}?\dmetry of lines and planes through a fixed point. For
ir}sjcéh e, the translations of 2.32, 2.126, 2.13 are as follows:

(881, If the edges of two covertical trikedra correspond in such

\ ) @ way that the planes joining corresponding edges are coaxial,

then the lines of intersection of corresponding faces are coplanar.

8.52, If‘abcd and a'b'c’d’ are two plane sections of a set of
four coaxial planes, and ab || cd, then also a'd’ || ¢’d’.

8.53.  For every partition of all the rays within an angle into two
NON-VECUOUS sels, such thal no ray of either lies between two rays
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of the other, there is a ray of one sei which lies between every other
ray of that sef and every ray of the olher sel.

The deduction of these theorems from Axioms 8.311-8.32
is left to the reader. The particularly significant theorem 850\

is due to Reyes y Présper.* The final result is as followsa
{

8.54. The descriptive geomelry of lines and planes iroigh a
point can be identified with the real projective geome:ixz_{}"of points

and lines in o plane, A
\

In other words, the properties of a bundlémz;-e the same in
descriptive geonletry as in real projectiv.ggeometry. In par-
ticular, there is a principle of duality béfwcen lincs and planes
of a bundle. Using this, or applydig)8.54 to 2.33, we obtain
the bundle-dual of 8.51, which is élsd its converse:

B.55. If the faces of fwo cowe:ig‘ca"l trihedra correspond in such @
way that the lines of f.imersé@i(m af corresponding faces are co-
planar, then the planes joirting corvesponding edges are coaxial.

8.6. Generali éd’\bundles and pencils. Given two c¢o-
planar lines a auad\h, which fail to meet within a certain convex
region of prejéetive space (or as drawn on an ordinary zheet
of papcr),:’cﬁe problem of constructing another line thyugh
their in&{cce:ssible point of interscction can be solved by moans
of 2% But it can be solved more clegantly as follows:  Jein
&idﬁd b by planes to a point E cutside ab. Then lines of the

(@esired kind arc coplanar with the line (Ea, Eb)., (It will be

W

proved in 8.61 that the result is independent of the choice of
E.} Esscntially, instead of the inaccessible point {(a, b} we are
using the bundle of lincs and planes through it. From the
standpoint of the convex region, or of the corresponding de-
scriptive geometry, we cannot call this a bundle without

*Reyes v Prosper [11; Robinson [1], pp. 59-60,
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extending the meaning of that word. Let us call it an improper
bundle, in contrast to the groper bundle whose centre is an
accessible or ordinary point. The following definition applies
equally well to either kind.* N\

If a and b are any two coplanar lines, we define the byndle
{a, b] as a class of lines and planes, consisting of all lines of
intersection of planes through a and planes through b,ltagether
with ali planes through every such line, and all “lhié‘s of inter-
section of such planes with the plane ab. If aand b intersect
in a point O, we have a proper bundle, consigéing of all the lines
and planes through the centre O. We shall sce that an im-
proper bundle has many of the same pfopérties.

The common planes of two butidles are said to form a
pencil.t 1f the two bundles contain)e common line o, we have
a proper (axial) pencil, consistjrjéof all the plancs through the
axis 0. The essential propefties of these generalized bundles
and pencils are developed'in the following theorems.

8.61. Thereis jusione line of a given bundle through any
point (other ikan.t!@.c’entre, in case the bundle 15 proper).

Proor. L&y [a, b} be the bundle, and C the point. When
C is outsidg the plane ab, the unique line through it is (Ca, Cb).
The thegxf@ni is again obvious when € lies on a or b.  Suppose,
ther\ihatt C lics in ab, but not on a or b. Let @ and e be any
twq'lihes of the bundle outside ab., What we have to prove is
that the line ¢ =(Cd, ab) could just as well be constructed as

~\ XCe, ab), or that ¢ and e are coplanar. Since this is obvious

when a and b intersect, we shall suppose that they do not.
]}et A, A’ be two points on a, as in Fig. 8.6a. Take a point

N, in the plane ab, on the other side of b, and construct

B=(AN, b), B'=(A'N, b). Take a point C’ on ¢, on the
*Pasch and Dehn [1], pp. 33-36; Schur 1L, pp. 16-18; Whitehead (2],

PP- 18-22; Baker [1], pp. 110-114; Robinson 1], pp. 61-67.
tVeblen 1), p. 372.
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opposite side of BC from B, and construct L=(BC, B'C').
By 8.317, NL meets CA in a point M. Since &, b, ¢ are each
coplanar with d, we can apply 8.51 to the trihedra which join
any point on d to the triangles ABC, A'B’C’, and conclude that
C’A’ passes through M. Since L, M, N are collinear, we can ’
apply 8.55 to the trihedra which join any point E on e tothe
same triangles, and conclude that the planes Ea, Eb, E\c Are
coaxial, i.e. that Ec passes through (Ea, Eb), which is ¥

4

C.r

) “Fic. 8.6

It follows that, the Pundle [a, b} is the same as [a, ¢]. Also
any line d and aﬁy\pIane p determine a bundle, provided p
does not contdid d; the bundle so determined is naturally
denoted by fdi-p).

8,626 ihnny two lines of a bundle are coplanar.

PRoor. Let d and e be two lines of the bundle [a, b]. If

}1\{3(% in the plane ab, we know that d and e are coplanar. The
'“\},‘aine conclusion holds if d and e lic on opposite sides of ab;
N\ for, the plane joining d to any point on e mects ab in a line of
the bundtle, and so contains € entirely. Suppose, then, that d
and e lic on the same side of ab, and let g be any line of the
hundle on the other side of ab, as in Fig. 8.68. Let Dand E

be any points on d and e, respectively, and F any point be-
tween them. Since the lines g and c—=(Fg, ab) are each
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coplanar with d, and similarly with e, we sec that d and e
belong to the bundle [g, ¢]. But d and e lic on opposite sides
of the plane gc. Hence d and e arc coplanar.

ar ,.’
F1e.8.68

8.63. 4 bundleis q{etéfmmed by any lwo of its lines.

Proor. Letd a,n@;\e be two lines of [a, b]. It follows from
8.62 that a and. b afe lines of the bundle [d, e]. Let F be any
point in the plafe de; then the linc through F of the bundle
[a, b]is coplai}afr with a, and so belongs to [d, e]. Let G be any
point outgide the plane de: then the line through G of [a, b] is
c0pla1\aif>«i"ith cach of d, e, and so belongs to {d, e]. Thus the
bu“nﬂT‘es (&, b} and [d, e] are identical.
M\;“\i’ 8.64. If p is any plane of a given bundle, and C any point

\ \in p, then the line through C of the bundle lies in p.
Proor. Otherwise, any plane through that line would
meet p in another line through € belonging to the bundle. This
contradicts 8,61,

865, Thereis just one plane of a given bundle hrough any
line not belonging to the bundle.
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Proor. Let AB be the given line, and BC the line through
B of the bundle. Then ABC is the required plane. It is
unique since, if two planes of a bundle intersect, their common

line belongs to the bundle, ~

8.66. Thereis just one plane of a given pencil through any

point {not on the axis, in case the pencil is proper). \ D

ProoF. Let1and m be the lines, through the gnfen “point
0, of the two bundles which determine the pencLl Then Im,
belonging to both bundlcs, is the required plamx‘ "Any other
planc through O of the pencil would meet Im\n “atine belonging
to both bundles; the pcncﬂ would then co;@st of all the planes
through this line, its axis. \\

\’ Fra. 8.6c

"\’ 8.67. Any two planes belong to a unique pencil.

\‘ Proor. A pencil containing two given planes p and o is
determined by two bundles [1, p] and [m, p], where 1 and m are
two intersecting lincs in ¢ whose common point O does not lie
in p. To establish the uniqueness of this pencil, we shall show
that any other bundle which contains p and ¢ also containg
every common planc of [1, p] and {m, pl.

Let [n, 5] be such a bundle, n being its line through 0. By
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8.64, nlies in ¢. Take any two points A, A’ in p, any point C
on the line (Am, p}, any point B’ on (A’n, p), and construct
a=04A, b=(An, Cl), c=0C,
a'=0A', Y =0B, ¢'=(A'm, B1), ~

as in Fig. 8.6c. By 8.55, since 1, m, n are coplanar, the thrée
planes aa’, bb’, c¢’ pass through one line 0. Let 01 be\cmy
point on neither of the planes p, o. Let I;, my, n, 01 be the
lines through O, of the respective bundles {l, p],‘m 21, [n, el
To, p], and construct

21— 0A, by=(Any, CL), 6:=G0,

a,=04", b,/=0B, ¢ —(A'ml, B'l;).

Now, the bundle [b, p] contains the anes An, Cl, which meet
p in tke lines through A, C of the fespective bundles [n, pl,
[L, p]. But [by, ], containing the same lines through A and C,
is the same bundle. Hence the planes bb’ and bib,’ {through
B’) are coaxial with p. Simﬂarly, ce’ and ¢.¢,’ {through C)
are coaxial with p. Thus the three planes aa,’, bbb/, €180
belong to the bundlerfe) o], and pass through the line 0;. By
8.51, applied to thé frihedra a;b,¢, and a,’by’cy’, the three lines
I, my, 0, are ch nar. Thus any plane belonging to both
bundles [f, pl and {m, p] belongs also to [n, pl.

8.6§\Any three planes, not belonging to ¢ pencil, belong
to g wnigue bundle.

}ROOF Let p, 5, 7 be the three planes, and O any point
\m 7. Let w be the plane through O of the pencil determined
by pand ¢. Then w meets + in a line through O, say 1. The
bundle (1, o], containing the planes w and p of the pencil, con-

tains ¢ also, by 8.67. This bundle is unique, since two such
would determine a pencil,

8.69. If two pencils contain a common plane, they belong io
one bundle,



§8.7 IpeaL POINTS axD LINES 17¢

Proor. Let each pencil be determined by the common
plane and one other plane, and apply 8.68.

8.7. Ideal points and lines. In this section and the next,

shall establish the validity of the “first model” for real
prc}]ecu ‘e geometry, by translating the above theorerné,
according to the dictionary on page 24, and deducing { {the |
axiomws 2.111-2.13.  Proper and improper bundles (or per;cﬂs)
will be translated as ordinery and ideal points (or ln;les) It is
natural to identify theordinary pointsand lines w1thﬂ1e centres
and axes of the proper bundles and pencils, and 0 think of the
ideal points and lines as centres and axes of nihproper bundles
and pencils,® ..\

An analogous change of meaning\ ‘occurs several times
in arithmetic.t For instance, wg “derive the field of
rational numbers from the rmg of integers by defining a
rational number as the class of faquivalent” pairs of integers
n/d, the criterion for cqulvalence of such pairs being #d’ =dn’.
We then observe that cemam classes of palrs {namely those in
which 4 divides #) a\\ksomorphlc to the integers themselves.
Therefore we agregito include the integers among the rational
numbers, identifying the integer # with the class of pairs
cquivalent to k. It is to be clearly understood, however,
that the us&0 such devices in mathematics is psychological
rather rhéﬂ fogical. They aid our thinking in much the same
way as d1agrams do in the discovery of geometrical theorems.

Refurnmg to geometry, we say that a point and a line
‘Q)rdmary or ideal) are incident if the bundle contains the pencil.
In particular, an ordinary line passes through an ideal point
if it belongs to the corresponding improper bundle. Similarly,
we say that a given plane passes through an ideal point or line

*Pasch and Dehn [1], pp. 40-49; Schur (1], pp. 18-20; Beonola (1], pp-

118-118; Veblen {1], pp. 373-376; Whitehead [2], pp. 22-29.
{Raobinson [1], pp. 77, 86.
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if it belongs to the corresponding improper bundle or pencil.
Thus Theorems 8.61-8.69 are translated as follows:

An ideal point is joined to an ordinary point by an ordinary
line. ~

Any two ordinary lines through an ideal point are coplanar

If two ordinary lines lie in a plane, they meet in 4 pomt
(ordinary or ideal). O

Any plane containing an ideal point and an Qrdmarv point
contains their join. 0,

An ideal point {or line) is joined to an«brdm&ry line {or
point) by a plane.

Any two planes meet in a line (ordii}a‘ry or ideal).

Any three non-ceaxial planes me&t‘ln a point (ordinary or
ideal). O\

Any two coplanar lines (ondmary or ideal} meet in a point.

It is easily deduced tha!:"an ideal line meets a planc {not
containing it) in an ideal*point. (Naturally, every point on
an idea! line is ideal) Such results become quite obvious
when we think gf"?hc ordinary points and lines as interior
points and ‘‘seeants”” of a convex region, such as a sphere.
This model §orms a suggestive guide, but we have not yet
completcd\xts justification.

’\n

§8." Verifying the projective axioms. ' Clearly, Axioms
Zﬁl-Z 114 present no difficulty. Before considering the nest,
it is useful to remark that we can prove Desargues’ Theorem
232 and its converse 2.33, by joining the vertices and sides
o_f the given triangles to an ordinary point outside their plane,
and applying 8.51 or 8.55 to the consequent trihedra.

Axiom 2.115 (Fig. 8.84) is easily verified whenever at least
one of A, B, C is an ordinary point; but it is no longer obvious
when all these points are ideal. To establish it we construct,
in any plane through BC, two triangles whose points of inter-
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section of corresponding sides are D, B, C. This can be done*
in such a way that each triangle has at least two ordinary
vertices, while no two corresponding vertices are both ideal.

Fic. 8.8 )
IG A ‘:\\'

7

Then all threc sides of each triangle arg, 6:1'}1nary lines, and so
also are the three joins of corresponding vertices, which, by
2.33, arc concurrent. We now jgtn’:the'sc nine ordinary lines
to A by nine planes, which intersect any plane through DE in
a new set of nine lines (ordinary or ideal). These again form
two triangles with their S@responding vertices joined by con-
current lines. Hence, by 2.32, the points of intersection of
corresponding sides, are collinear. These three points, lying
on AD, AB, AC, respectively, are D, E, and the desired point F.

We may now~consider the class of points lying on lines
which join Af o the points of BC as a plane: ordinary if it con-
taing an Qrdinary point, ¢deal otherwise. (Even when both
A and B{ are ideal, the plane is not necessarily ideal; for, A
angl@C' might be an ideal point and line in a given ordinary
‘alja}ne.) Since an ideal plane contains no ordinary point, the

rification of 2.116 is trivial.

It remains to be shown that an ideal plane p meets any
plane w in a line, Let a and b be two arbitrary linesin p. I
w is ordinary, it meets p in the line (a, &)(b, »). The same

*Robinson [1], p. 66. (His 4 and 4’ may be taken to coincide with our
D.) For an alternative procedure see Pasch and Dehn [1], pp. 52-53.
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conclusion holds when  is ideal, provided there is a point of
intersection (a, «) for any line a. This can be constructed as
the point of intersection of a with the line (Oa, «}, where O is
any ordinary point, Thus 2.117 is verified.

To verify the Axioms of Separation and Continuity; We
define the separation of four coliinear points in a way tlm.t\“ il
apply to ideal pomts just as well as to ordinary poingsN “Fhis
is done by joining the four points to an ordmarv paint O by
lines a, b, ¢, 4, and taking the definition of ab . 8d from §8.4.
To see that this way of defining separation J‘s\mdepmdent of
the choice of O, we ]om the same four poin{sto another point
O’ by tines a’, b, ¢/, d, and apply 8.52 30 the coaxial planes
aa’, bb’, cc’, dd’. Thus Axioms 2.1214 2(13 follow from the cor-
respondmg results in the geometiy® of a proper bundle {§8.5).

The desired extension of descriptwe space is now accom-
plished. We have found that the descriptive geometry of
bundles and pencils is_ xsomorphw with the projective
geometry of points and {ines. But it is obvicus that the
geometry of proper ‘t@ndles and pencils is isomorphic with the
descriptive geometry Jof points and lines. In this sensc, there-
fore, descriptiye 'space is a part of projective space, and the
use of ideal gleshents is entirely justified.

A .

We saw) in 8.54, that the geometry of a proper hundle is

Pmﬁﬁiﬁﬁe. It can be proved similarly that the geometry of an
impeoper bundle is descriptive. In other words,

' éfSl The geometry of ordinary lines and planes through an
\”‘ - zdeal point can be identified with the geometry of ordinary poinis
and lines in a plane.

' 8.9. Parallelism. It is interesting to observe that, if
Axiom 8.32 were omitted, we could have a ‘‘descriptive”
geometry* in which two coplanar lines always intersect; 8O

*Veblen [1], p. 348.
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that all bundles (and pencils) are preper, and the projective
axioms (cxcept 2.13) can be deduced without extending the
space. The manner in which continuity provides non-
intersecting lines will be seen in the proof of the following
theorem:*

N

8.91. Every line contains at least one ideal posnt. - L0

ProorF. Suppose, if possible, thata certain line g cc;n’tﬁins
no ideal point, so that itis a projective line whose points are
all ordinary. Take points B, C, D on g, such thag[BED), and
apply 2.13 to the partition of the segment BD /C"imto the two
rays B/C and D/C. The dividing point E belongs to one of
these rays, say the latter. By 8.312, this r'a?’contains a point
F such that [DEF]. But by 2.13, such apoint F belongs to the
cther ray; so we have a contradipti@n’. and our theorem is

ol

proved.

In order to define paralleli}ém? we consider once more a flat
pencil with centre A, and a tine BC or q in the same plane, as
in Fig. 1.2a. The peneiluncludes alt the lines that join A to
ordinary points on q'.:.,By 8.91, it contains at least one more
line, say s. If (g sb\:s the only ideal point on g, we say (with
Euclid) that s/is'ptrallel to 4.

But if g eontains more than one ideal point, let R and S be
two, suchfiat BR [] CS. Then, by 2.13 applied to the segment
CS/B, the’'ray C/B contains a first ideal point M, such that all
points\between C and M are ordinary, while all points “beyond”
MQafé ideal. Similarly, the supplementary ray C/D contains

“a‘first ideal point N. We now say (with Gauss and Lobat-
schewsky) that both AM and AN are parallel to q.

Without making a further assumption, we cannot say
whether q contains just one ideal point or more than one. In
other words, we cannot say whether one or (wo lines parallel

*yeblen [1], pp. 369-370.



176 DESCRIPTIVE GEOMETRY

to q can be drawn through A. We may combine these alter-
natives by using rays instead of lines, thus:

A ray pi, emanating from A, is said to be parallel to a
ray qq if it joins A to the first ideal point on q,. It is then also

. . . . N\
said to be parallel to the line ¢ which contains q;.

According to this definition, there are always t#Ontays
from A parallel to q. If g contains only one ideal pg'mt,'these
two rays are supplementary (and the word “first’dn the defini-
tion is superfluous}. The rays are again suppl}zméntary if A
lies on g, any ray being parallel to itself. 3Wherl A does not lie
on q, the parallels from A separate evéry ray that mects g
(in an ordinary point) from every othgt’sdy that fails to do so.

If the ray p1 is paraliel to g, so alée%s any ray proceeding in
the same sense along the line p which contains p;. Thus the
position of A on p is immaterial,* and we can define the paral-
lelism of two lines as followg:™

A line p is said to be patallel to a line g if it contains the
first ideal point on gn either sense. Hence, if there is only
one ideal point cn q,\ﬁhere is only onc line paralle! to q through
any point A; but\\f there are two (and so infinitely many) ideal
points on q, thgn there are two lines parallel to q through any
point A no{‘lﬁng on q,

The felation of parallelism, as defined above, is obviously

reflezive!” We shall now prove that it is also symmetric and
trg@tive.T

e ' 8.92. If pyis parallel to g, then qu ¢s parallel to pr.

N
h
\ )

Proor. Take any points A, B, on p, g, respectively, and
A’ on A/B (or “BA produced"), as in Fig. 8.9a. From A’

*Gauss [1}, p. 203
tGauss gave a metrical proof of 8.92, and a descriptive proof of 8.93.
Lobatschewsky’s treatment is somewhat simpler, but still metrical. (See

Carstaw {1}, p. 45.) Qur descriptive proof of 8.92 was suggested by Gauss's
proof of 8.93,
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draw r, parallel to q;. Then any ray from A’ within the angle
between A'B and r, meets qq, say at €. It is a consequence of
Axioms 8.311-8.317 that* if a line coplanar with A’, B, C meets
the segment A’B and does not pass through C, it meets one of
the segments A’C, BC. ‘Hence p, not meeting BC, must meét
A’C. Since this property of A’C applies to every ray bet\(e\e'h
A’B and ry, 1 is parallel to p,. Let M be the first ideal point
on qy, so that p; is AM and r is A'M. Then, since ryds parallel
to p, M is the first ideal point on p,, and g {or Bg@ﬁié likewise
parallel to pi. \%

Q.

AJ

M

Thus paral}ehrs‘.m is symmetric, and we may say that two
rays are parallél(to one another) if and only if they have the
same first, \iél}eél point. Hence

8.93..;%135 rays which are parallel to the same roy are parallel
fo amednother, and

£\
Q&Qé. The lines parallel to a given ray form animproper bundle.
We naturally call this a bundle of parallels, and the corres-
ponding ideal point a point at infinity. Moreover, any line and
plane of the bundle are said to be parallel (to one another).
Thus two lines, or a line and a plane, are parallel if and only
if they have a common point at infinity,

*Forder {1}, p. 58,
12
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The following theorem will enable us to distinguish two
kinds of point at infinity:

8.95. If there is a line containing only one ideal point, then
every parallel line contains only one ideal point. N\

Proor, Let q be such a line, and p any parailel h,ne
Choose A’ as in Fig. 8.9a. Since g contains only oné idéal
point, the rays from A parallel to q, and likewise thoSe from
A’, are supplementary. But the latter pair of raya are parallel
also to p. Hence p contains only one ideal pomt

Tt follows that every point at infinity islef\ohe of two kinds.
Every ordinary line through a point of ghe’first kind contains
no other ideal point; but every line &Hrough a point of the
second kind contains an infinity ofNdeal points.

If every point at infinity i ig of"the first kind, then every
ordinary plane contains just gae‘ideal line (its line af infinity),
and there is just one ideals pfane (the plane ai infinity). This
geometry is affine (see §2 1Y, and can be metricized by singling
out an elliptic or hypetbolic polarity in the plane at infinity.
We thus obtain Q—‘:e—dlmensmnal Euclidean or Minkowskian
geometry, respectively.

In hyperbolré geometry, which may now be considercd as
the geomctry of points interior to an oval quadric, every point
at mﬁmty\is of the second kind. But this is not the only such
case{the locus of points at infinity may be any convex surface,
ngt ‘necessarily a quadric. - The geometry can then be con-

rsidered as a “distorted”’ hyperbolic geometry.

Between these extremes we have many geometries in which
points at infinity of the two kinds coexist. The most obvious
case is a Euclidean half-space,* wherein any line parallel to
the bounding plane contains only one ideal point, but any
other line contains infinitely many (in the supplementary hali-
space). Another instance is the interior of a cone (in real

projective space); here the vertex alone is of the first kind.
*Forder [1}, p. 303,



CHAPTER IX

EUCLIDEAN AND HYPERBOLIC GEOMETRY

N

0.1. The introduction of congruence. In Chapters Yw\{rﬁ%

we introduced the elliptic metric into real projective geopmetry
by means of the "‘absolute polarity,” and observed théé{i‘uiva-
lence of two alternative definitions for a cbngg(eh’t trans-
formation: a point-to-point transformation (preserving dis-
tance, and a collineation permutable with tlr\e absolute polar-
ity, It is quite easy to introduce the hy, rholic metric simi-
larly (see §8.1). Butin order to follow\the historical develop-
ment more closely, we prefer to reverséthe process, introducing
congruence into descriptive geométty as a second undefined
relation, and stating its prcpertiés}’in the form of axioms, The
propositions of Bolyai's “abgolute geometry” can then be
deduced in a straightforw@rd manner. After imbedding the
descriptive space in a’régt projective space by the method of
Chapter v, we shalb find a definite polarity which is per-
mutable with evefyycongruent transformation.

The relatigm\of'congrucnce applies initially to point-pairs,
and we write AB=CD to mean that the point-pair AB is con-
gruent to€hc’ point-pair CD. But since every point-pair deter-
mines & Wnigue segment, no confusion will be caused by reading
the égf’me formula as ‘‘the segment AB is congruent to the
sefnient CD.,”

/ The idea of introducing congruence axiomatically is due
to Pasch. His axioms were simplified by Hilbert and R. L.
Moore.* For the sake of reducing the number of axioms to a
minimum, it should be noticed that 9.11 makes 8.312 super-
fljous. Accordingly, we begin with the single undefined

*Pasch and Dehn [1], pp. 92-101; Hilbert [1}, pp. 9-1%; Moore f1].
179
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entity, a poini, the two undefined relations of intermediacy and
congruence, the ‘'descriptive’” axioms 8.311, 8.313-8.32, and the
following five

AXIOMS OF CONGRUENCE Q.

0.11. - If A and B are distinct points, then on any vay 'C/E
there 1s just one poini D such thai AB=CD.

9,12, If AB=CD and CD=EF, then AB= EF

9.13. AB=BA. (Therefore AB=AB.) :

9.14. If [ABC] and [A'B'C'] and AB= A’B and BC=B'C/,
then AC=A'C,

0.15. If ABC and A'B'C’ are fugd, Imads of non-coilinear
points, with BC=B'C’, CA=C'A’, AB=A'B’, while D and D’
are two furiher poinis, such that [BCD] [B’C'D’], and BR=B'D’,
then AD=AT. A\

\.

It is easily deduced thaf “the relation of congruence is not
only reflexive and trapsitive but also symmetric.* Moreover,
this relation is rcads,}y extended from point-pairs or segments
to figures of an l(md The only really complicated axiom is
9.15, which ma;Kbe roughly described as ensuring the rigidity
of “a triangle with a tail.”

The détailed deduction of elementary theorems would take
too much space, 50 we shall be content to mention some of the
mg irhportant steps. Axioms 9.11-9.14 enable us to define
.thg length of a segment (or of an interval), and then 8.32 shows

o “\that lengths form a continuous set of magnitudes. In par-
\ ), “ticular, every interval has a mid-point. After defining con-
gruent angles in the natural manner, we can deducef that if
p1Q: 13 any angle, and a, any ray, there are not more than wo

rays by, in a plane through ay, suck that aib:1=piq:.

If a; and a, are supplementary rays, and b, emanates from

*Forder [i], p. 92.
fForder [1], p. 132, Hilbert tock this as an axiom, instead of 8.15.
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the same vertex, the angles a;b;, and a.b; are said to be sup-
plementary. If ajhy=asb;, then the rays a; and by, or the
lines & and b which contain them, are said to be perpendicular,
and the angle a;by is called a right angle.

The statement AB=CD for segments is clearly equivalent: N
to the statement AB=CD for lengths, so no confusion arises
from using the same symbo! for a segment and its length. S A~
similar remark applies to angles, although there the mtuahon
is slightly more complicated.* N

The circle with centre O and radius OP is d R as the
class of points X, in a plane through O, such that O0X=0P
(or OX=0P). A point Q such that 0Q>0OF'is said to be
outside the circle. Points neither on nor guside the circle are .
said to be inside. It can be proveclt"’?hat if a circle with
centre A has a point inside and a péint outside a circle with
centre C, in the same plane, thc.li:the two circles meet in at
least one point on each side ofAC. It then follows that any
two right angles are congruenb,and we have reached Euclid’s
starting-point (with Postaflates I-IV). Accordingly, we accept
Euclid’s propositions Ig 4228, with the word “parallel” replaced
by ‘“‘non- mtersectlﬁg\\{ We shall also adopt the customary
notation /BAC fox the angle formed by the rays from A that
contain B and €, respectively.

;Pé?pendicular lines and planes. In Chapter vir we
saw hqv}tb extend descriptive space by defining ideal elements,
and foind that the result is real projective space. The method

MuseH has the advantage that no new axioms are needed, as the
\1&eal elements are sets of things alrcady defined. Our purpose
in the present chapter is to show that the effect of introdu-
cing congruence into the descriptive space is to single out an
absolute polarity, either in one ideal plane or in the whole pro-

*Forder [1], pp. 113-115.
fForder [1}, pp. 308, 131, 133.
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jective space. In other words, the treatment of Cayley and
Klein will be derived from that of Bolyai and Lobatschewsky.
As a first step we shall obtain, in §9.3, a metrical descrintion
for the bundles and pencils which determine the various kinds
of ideal element, beginning with the following chain of thed-
rems about perpendicularity. (Until §9.4, all points, \ﬁnes,
and planes considered are ordinary.) N

9.21. A line which is perpendicular lo each gf’iufo iniersec-
ting lines at their common point A, is perpen@&cular te every
line through A in the plane of the two lines,

Euclid’s proof {XI, 4} is valid. Sucl\'i [ine and plane are
said to be perpendicular (to one anoti&n)

9.22, There is jusl one hne bkmugk any given point, per-
pendicular to any given plane. o+

Ituclid’s constructions (XI 11 and 12) give such 2 line.
(But his proof of the former, has to be modified* to avoid using
parallels.) The uniqueness follows (as in Euclid XI, 13) by
considering the planethat two such lines would determine.

9.23. Ifq }ﬁﬂe o coniains o line t perpendiculor Lo 0
plane p, thenp.oniains a line s perpendicular to o.

This fotlbws easily from 9.21. Two planes such as s and &
are sqi"Q;f‘d'be perpendicular. (Cf. Euclid XI, 18.)

'\’},2“4. If p and o are perpendicular planes, any line in d

\.‘;qkz'ck is perpendicular to the line (p, o) is perpendicuiar {0 p.

L 3
N\
\ 3

ProoF. Let o contain the linc BC perpendicular to p, and
p contain the line BD perpendicular to o. (See Fig. 9.24.)
Let AE be any line in ¢ perpendicular to (p, o) or BA. On A/E,
take F so that AF=AE. By considering pairs of congruent
triangles (as in Euclid’s proof of XI, 6), we deduce in turn that
BE=BF, that DE=DF, and that DA is perpendicular to EA.

*Forder [1], p. 123.
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Hence EA, being perpendicular to both AB and AD, is per-
pendicular to p,

D

FiG. 92& N/

9.25. Two lines which arg. perpendscu!ar to the same plane
are coplanar. : N\

Proor. Let BC axtd AE1 be any two lines perpendicular
to p (at B and A). Qy 0.24, the line AE (perpendicular to AB
in the plane ABC)\E perpendicular to p. By 9.22, AE, coin-
cides with AE and s0 is coplanar with BC. '

9.26. Aplane which is perpenduular 1o each of two inter-
sectmg\e@ﬂes is perpendicular to their common line. '

J?%OF Let p be perpendicular to the two intersecting
pl‘a,ﬂes o, 7. From any point C on (g, 7) draw lines perpen-
\ “dicular to (p, o) and (p, 7), respectively. By 9.24, each of these
lines is perpendicular to p. But by 9.22, there is only one
line through C perpendicular to p. This therefore lies in both
planes #, r; and is (s, 7) itself.

9.27. There is just one plane through any given point,
perpendicular lo any given line.
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ProoF. In the plane of the given point A and given line 1
{or, if T contains A, in eny plane through 1) draw the line t
perpendicular to r through A. Let s be the line through A
perpendicular to the plane rt. Then st is the required plane
(by 9.24 with p=st, s =rt). The uniqueness can be established
(as in Euclid XI, 14) by considering the section whick two
such planes would make on rt. \)

'\
\

9.3. Improper bundles and pencils. We 0¥ consider
two kinds of bundie and two kinds of pcncil;\w"rthouf saying
that they are necessarily different. 30

9.31. The lines and planes perpepdiclar to o given plane
form an improper bundle. A

ProoF. Letaand b be any fv,;'o'lines perpendicular to the
givea plane p. By 9.25, theséare coplanar. All the planes
through a or b, all the liqés%f intersection of pairs of these
planes, all planes through tach of these lines, and all lines of
intersection of such planes with ab, are perpendicular to p (by
9.23 and 9.26). These lines and planes form the bundic [, b,
which is improperby 9.22. -

9.32. '{hﬁ ‘planes perpendicular to a given line form on

- imprope,(g}cncél.

R00F. Take any two planes p, ¢, through the given line,
and“consider the bundles perpendicular to p and ¢, respec-

{ft.iirely. The common planes of these bundles form a pencil.
'Being perpendicular to both p and ¢, they are perpendicular

to the given line. Conversely, every plane perpendicular o
the given line is perpendicular to both p and «, and so belongs
to the pencil. The pencil is improper, by 9.27.

_ By 8.94, there is a “bundle of parallels” consisting of all
lines and planes parallel to a given ray. Let p be any plane
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of such a bundle. Then those planes of the bundle which are
perpendicular to p, being the common planes of two bundles,
form a pencil, called a pencil of parallels. (This pencil is im-
proper. For otherwise, by 9.26, its axis would intersect p; but
it would also be paratlel to p.) Any two planes of such a pencil
are said to be parallel (to one another).

N

9.4. The absolute polarity. The ideal point R, deﬁne\&\
by the bundle perpendicular to a plane p, is called the gbsolute
pole of p; it Hes on every line or plane perpendicular, tdp.) The
ideal line RS, defined by the pencil of planes perperdicular to
a line (p, 0), is called the abselute polar line of (pwo); it lies on
every plane perpendicular to (p, 7). AN

0.41. The absoluie poles of the pla?zéjs\fhrougk an ordinary
line | are the points of its absoluie polgnline I'.

Proor. Let @ and w; be any. two planes perpendicutar to
{, so that ¥ is (@, wi). Since allplanes through 1 are perpen-
dicular to w and w, their abs‘olute poles lie on 1. Conversely,
if R is any given point of'¥, there is a plane thtough 1 whose
absolute pole is R, nggnély the plane through 1 perpendicular
to Rl L\ -

9.42. Tke'algs’ﬂlute poles of the planes through an ardinary
point A are thepoints of an ideal plane o.

PROOEii.\L,et 1 be any line through A, and p any plane
througM but fot through 1. Let I’ be the absolute polar line
of 1xand R the absolute pole of p. By 9.41, R does not lie on

L'("\The planes through 1 meet p in a flat pencil of lines, whose
\a‘l:fsolute polar lines join R to the points ofI’. Hence the planes
through the lines of the flat pencil (i.e. the planes through A)
have for absolute poles the points of the plane e=RV. This
plane is ideal, as every point in it is the absolute pole of an
ordinary plane.
We call o the absolute polar plane of A.
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Thus every ordinary point, line, or plane has a definite
absolute polar plane, line, or point (pole), with iucidences
corresponding dually.* But we must not assume that every
idezl element is the pole or polar of an ordinary element,

We saw, in §8.9, that a line may contain one ideal point.er
more than one. By the Axioms of Congruence, any linels
congruent to every line; hence either every line contaifighjust
one ideal point, or every line contains infinitely méﬁy ideal
points. In other words, these axioms exclude the. PocmsLence
of the two kinds of point at infinity deﬁned On page 178.

- Accordingly, we make our geometry categorm}l by stating one

further. axiom, either affirming or denying™Mhe existence of a
unigue parallel to a given line througly a'given point.

9.5. The Euclidean case. Qrfé ‘of the alternative state-
ments is:§ L ™

THE EUCLIDEAN AXIOM OF PARALLELISM

9.51.  There is at leasi one line q and at least one point A, nol

on Q, such that not wioré than one line can be drown through A

coplanar with buto\ﬁaz meeting q.

This Imphes that one (and so every) ordinary line contains
just one 1de\al ‘point, its “point at infinity.” Hence the join of
two suckpomts must be an ideal line. An ordinary planc con-
tains.erily one ideal line (since two such would meet an ordin-
ary\ ifte in two ideal points); hence the plane determined by
&Wwo such “lines at infinity" must be an ideal plane. Similarly,

there is only one ideal plane {in three-dimensional space).
~ This-“plane at infinity"’ contains every ideal point, and is the
absolute polar plane of every ordinary point, Thus the “‘abso-
lute polarity” does not operate uniformly throughout the whole
projective space, but i is degenerate.

*Pasch and Dehn {11, p. 147,

{Maore [1}, p. 489; Forder (1], p. 307.
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Let A, A, be two ordinary points, and p, p; the planes per-
pendicular to AA, through A, A;, respectively. Then p and ;1
have the same absolute pole, namely the point at infinity on
AA,; and every line perpendicular to pisalso perpendicular to
o1 Hence the absolute polar line of any such line is {p, P {
and every ordinary plane through the line at infinity in pAis
perpendicular to every ordinary line through the poi;(ﬁ §:t
infinity on AA,. In other words, we have an improper péncil
of (“‘horizontal”) planes perpendicular to an imprqp'éi"‘bundle
of (‘‘vertical'"} lines. vV

This correspondence between pencils and.bsndles can be
regarded as a two-dimensional polarity in theyplane at infinity,
two ordinary lines (or planes) being erpendicular if their
points (or lines) at infinity are conjugatein this polarity. Since
self-perpendicular lines are excluc}éd,’ the polarity is elliptic,
and we have the projective defipition for Euclidean geometry.

Since every ideal point is,ﬁb‘\v a point at infinity, the lines
and planes perpendicular to Any given plane form a bundle of
parallels, and the plan@ perpendicular to any given line form
a pencil of parallels, ()

A iarge part of }h\e above theory can be developed without using
continuity, providéd we insert some extra axioms of congruence. However,
we must thenjabandon the theory of parallelism as developed in £8.9, and
the above .de{ddctions from it. In fact, Dehn has developed a “‘semi-
Euclideapegéometry” in which all ardinary points have the same absolute
polar p\\\s;ne’, although ideal points exist outside this plane.®

2 &

:\'j 0.6. The hyperbolic case. The other alternative is:t

\ ) THE HYPERBOLIC AXIOM OF PARALLELISM
0.61. Theretsal least one line q and of least one point A, such
that two distinct lines can be drawn through A coplanar with but
not meeling 4.

*Dehn [1], pp. 436-438; Forder 111, pp. 337-338.
f{Moore {1}, p. 503.
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This implies that one (and so every) ordinary line containg
two (and so infinitely many) ideal points. We shall deduce,
in §0.7, that in this case the absolute polarity is non-degen-
erate, i.e. that every point, ideal as well as ordinary, has.a
definite polar plane. In preparation for this, we shali prgve
some of the classical theorems of two-dimensional hyptrholic
geometry,* culminating in the famous result about the angle-
sum of a triangle (1.32, 9.66).

By 9.61, the two rays that can be drawn fcom A I'}ar:‘“f’l to
q are not supplementary, and a ray from A m’e}ts g if and only
if it lies within the angle formed by these particular rays, In
other words, the flat penc11 of lines thm\trgh A in Aq contains
two special lines, p and p’, which gebaratf all other lines not
meeting q from all lines which megt\g’ (See Fig.1.24.} Accord-
ing to our definition, the lines»ﬁ“aﬁd p’ are paraliel to g. Itis
convenient to describe the other lines not meeting q°" as ilire-

parallel to q; they lie in? the “external”’ angle formed by the
two parallels, .

The figure consisﬁng of two parallel lines with a transversal
AB may be regarded as a triangle ABM with M at infinity; it
is therefore called a singly-asymptotic iriangle. Similarly, a
triangle ‘}uth two or three vertices at infinity is said to be
doublyz,0r” trebly-asymptotic. The analogy with ordinary

trla{ &'is exemplified in 9.62 and 9.64, which are adapted
Euchd I, 26 and 16.

*Carslaw [1], pp. 48-54.
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0.62. Tuwo singly-asympiotic triangles ABM, A'B'M’, such
that AB=A'B’ and 2 ABM = ZA'B’M’, are congruent.

Proor. If the angles at A and A’ are unequal, suppose the |
former to be the greater. Draw .a ray AD so that ZBAD =
/B’A’M’, and let D be the point where this ray meets BMas
in Fig. 9.6a. On B'M’, take a point D’ so that B'D’'~BD"
Then the triangles ABD and A’'B’D’ are congruent. 'Tile}efore

/BA'D = /BAD = /B'A'M, e \

which is absurd. Hence in fact ZBAM = /B/AM’.

Applying this theorem to the singly-agmptotic triangles
ABM and ABN, where AM and AN arfe)the parallels from
A to g, and AB is perpendicular to ¢ (as\in Fig. 1.2a), we con-
clude that #BAM and /ZBAN are éé[lfal, and therefore acute.
Their common value (which, by 9462, is a function of the dis-
tance AB) is called the angléof parallelism for AB, and is
denoted by I(AB). (Thisis Lobatschewsky’s notation.) It
follows also that the lifle through A perpendicular to AB is
ultra-paraliel to q. , {’I‘Eus

\. .
9.63. .Two linés }hs'ch are perpendicular to the same iine are
ultra-parailel {0:6‘?}'8 anoiher.

M M

Fi1G. 9.68

0.64. In a singly-asympiotic triangle ABM, the external
angle at A is greater than the internal angle at B.
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Procor. Produce BA to G, and draw AF so that /FAG=
ZMBA, as in Fig. 9.68. Then the perpendicular to BM from
the mid-point of AB is also perpendicular to AF. Bv 9.63, AF
is ultra-parallel to BM, and ZFAG < /MAG; that is, ~

ZMAG > £MBA. A

Qur next theorem concerns Saccheri’s isosceles birgegangle.
N

9.65. If ¢ simple quadrangle ABED has right mgg?é‘a}ﬁri D aend
- B, while AD=BE, ihen the angles ol A and B ake egral acule
angles.

Proor. By constructing pairs of g{)}%}tuent triangles, we
easily see that the angles at A and Bare equal. To show that
they are acute, we draw AM and(BM paraliel to D/E, as in
Fig. 9.6c, and apply 9.62 to the’trlangles BEM, ADM. Since
BE =AD, while the angles at"E and D are equal, we conclude
that /EBM = £/DAM. ,By. '0.64, we have £~ MBA < 2 MAG,
where G is any point omA/B. Hence

4BAD = /EBA < /DAG,
and ZBAD is ach(}."

We now @©ome to the theorem which Gauss used in his
unsuccegs&i:l attempt to determine the nature of physical space,
wher\haéet up theodolites on three mountain peaks.

N
AN A

FiG, 9.6¢ Fic. 8.6p
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0.66. The sum of the angles of any iriangleisless than two right
axgles.

Proor. By Euclid I, 17, the triangle cannot have two
angies that are right or obtuse; in other words, at least two of
the three angles must be acute. Let ABC be any triangle with
acute angles at A and B. Let Iand J be the mid-points pf\Bﬁ\
and CA, as in Fig. 9.6p. Draw AD, BE, CF, perpendiculer to
IJ. Then the right-angled triangles ADJ, CFJ are cangruent;
s also are BEE, CFI.  Hence ' \\ ’
9.67. AD =CF=BE, QO
and ZACB= £ JCF+ /FCI= £ JAD+ /EBL
The angle-sum of the triangle ABC is ('(

JBAC-+ 2 ACB4 2 CBA= ~BAY--2J8D+ LEBI+ £IBA
= /BAD+ZEBA.

By 9.65, these last angles are both! acute. Thus the angle-sum

is less than two right angles. 1. 114) .

_ Since any simple quacffaﬁgle can be dissected into two
triangles, it follows t};a(the angle-sum of a quadrangle is less
than four right ang{é\éw ) In particular, there are no rectangles:

0.68. Two cofgl@mr lines cannot have two commen perpen-
diculars. 2N

We 5@1%\.?‘11 9.63, that two coplanar lines which have a

¥

comm,@.p’erpendicular are ultra-parallel. Conversely,

9-69;’3 Any two ultra-parallel lines have ¢ common perpendicular,
S

N

\ \“ ConsTrRUCTION.* Let 1 and s be two ultra-parallel lines.
From any two points A and C on s, draw AB and CB’ perpen-
dicular tor. If it happens that AB=CB’, the desired common
perpendicular joins the mid-points of AC and BB’ (by the
symmetry of the isosceles birectangle ACB’B). If not, suppose
AB <CRB’. Take A’ on CB’ so that A’B’ =AB, as in Fig. $.6E.

*Hilbert [1], p. 149.
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Through A’ draw a line 8, making the same anglc with A'B’
that s makes with AB. Then (as we shall prove) s meets &’ in
an ordinary point D. Take a point D’ on A/C so that AD’=
A'D. Then the perpendicular bisector of DD’ is also pes-
pendicular to r.

Co

Fis, 9.63’

s N

Proor. Let L, M, Mf:bé; the points at infinity on t, &, 8,
on the same side of CB™as A. Draw the parallels BM, B'M,
B'M’. By 9.62, the&ingly- asymptotic triangles ABM, A’B'M’
are congruent. gf 9.64,
. LB'M < ZLBM = ZLB'M".
Hence B'M/.,\lying within ZMB’C, must meet CM; so also

 must A'M% “This gives D, and we have constructed D’ in such

a way th\at D and D' are two vertices of an isosceles birectangle

w1tl\1ts base on r. The desired result now follows easily.

\J

\‘z

* 0.7. The Absolute. We now return to three-dimensional
geometry, extended by the postulation of ideal elements: a
point at infinity for each bundle of parallels, a line at infinity
for each pencil of parallels, an ulira-infinite point for each
bundle of ultra-parallels (9.31), an ultra-infinite line for each
pencil of ultra-paralleis {9.32)}, and an ideal plane determined
by any ideal point and line that do not determine an ordinary
plane. Assuming 9.61, we obtain the following important
theorem (which does not hold in Euclidean geometry):
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0.71. Any two ordinary planes have distinct absoluie poles.

Proor. If two ordinary plaﬁes p and p; had the same
absolute pole, every line perpendicular to p would be perpen-
dicular to p;. Two such lines would form, with the sections of

g and p1 by their plane, a rectangle, contradicting 9.68. A
£ N\

It follows that the planes perpendicular to any two, ;}l«';nes
» and o, being the common planes of two distingtt Buandles,
form a pencil, whose axis joins the absolute polﬁr;iéf p and .
The planes perpendicular to any two planes of ¢his pencil form
a second pencil, which includes » and o and %0 consists of all
the planes through (p, #). Hence eag:}:(p}hne of the second
pencil is perpendicular not merely to'two planes of the first,
but to all. Two such pencils are said to be reciprocal. They
include as special cases the pg:;icil"s whose axes are absolute
polar lines, as defined in §9.4;;‘.~ Tn other cases (namely, when
both axes are ideal), they provide a definition for absolute polar
lires. Thus two lines, {one or both ideal) are absolute polars
if the ordinary pl ngs ‘through one are perpendicular to the
ordinary planes throéugh the other. In this sense every line,
ordinary or ideal; has a definite absolute polar line. Conse-
guently, qwﬁcﬁr point has an absolute polar plane, whose lines
are pcg:f‘tb the lines through the point; and similarly every
plang s an absolute pole.

072, The absolute polarity is of type 3, 3).

Proor. Of the four possible types of polarity {§3.8), two
are ruled out immediately: this cannot be a null polarity, since
an ordinary plane does not contain its pole; and it cannot be
of type (2, 4), since the plane joining an ordinary point to 2
self-polar line would be self-perpendicular.

13
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Fic, 9.7a

To exclude the remaining possibility, of aQn'i‘form or {8, 0)
polarity, consider the involution of conjifdte points on the
line HD in Fig. 9.7a. Here ADHK is a sitaple quadrangle with
right angles at D, H, K, and therefofé an acute angle at A.

(We may take H and K to be the.’ﬁ}i‘&;points of DE and AB

in Fig. 9.6¢.) The absolute pqla;‘j'rt’y in space induccs a two-
dimensicnal polarity in the pldte ‘of this “trireciangle.” Thus
the ideal point R = (KA, HD)¥s the pole of KH. Let 8 be the
pole of AD, and M the poiljt atinfinity on D/H. Then ZDAR,
ZDAS, and /DAM 4dre respectively obtuse, right, and acute.

Hence o\i..*\ S(RSM) 5S(HDM), -

and the order of\thc ordinary points on HD is opposite to that
of their ideahconjugates. By 2.96, the involution of conjugate
points ig hyserbolic, and has two {ideal) double points, one of
which\whf later be identified with M. Thus the absolute
pol%ri’e;} admits self-conjugate points, and is not of type (6, 0).
\ : The above proof depends essentially on 9.65, which tells us that the

¢~\fourth angle of a trirectangle is acute. "This, in turn, depends on the
“properties of parallelism, and so ultimately on the Axiom of Continuity.

By denying continuity, Dehn has developed a *non-Legendrian geometry™
in which pairs of coplanar lines may still have no ordinary interzection
although the absclute polarity is uniform (from which it follows that the
fourth angle of a trirectangle is obtuse, and the angle-sum of a triangle

is greater than two right angles). Following a different procedure, Hilbert

rules out this possibility (without assuming continuity} by strengthening
9.61.*
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By 9.72, there is an oval quadric, the Absolute, whose points
are self-conjugate; but we have not yet identified these points
with the points at infinity determined by bundles of parallels.

0.73. The points on the Absolute are the points al infinily.

ProorF. By 9.69, every improper bundle is either a bundbe\
of parallels or else the class of lines and planes perpendlcular
to a plane. Hence every ideal point which is not aspomt at
infinity has an ordinary polar plane. Also, by \9>42 every
ordinary point has an ideal polar plane. Thus 0n/an ordinary
Jine, whose points at infinity are M and N, all the ordinary
points are conjugate to ideal points, an(a}l the ideal points
sxcept M and N are conjugate to ordibary points. Hence M
and N, which separate the two cla§sesnf points, are the double
points of the involution of conpjgate points; i.e. they are self-
conjugate. Conversely, anvs self conjugate point can be joined
to an ordinary point by an ordmary line, and occurs as one of
the points at infinity ?n}that line,

Hence, also, theﬁ\}terior and exterior points of the Absolute
are the ordinapy and ultra-infinite points, respectively, and its
secant lines ana planes are the ordinary lines and planes. This
any two pdintts at infinity are joined by an ordinary line; in
other\*&&fds, the common planes of two bundles of parallels
forljgl.fa proper pencil.

AN

\\:“ 0.74. The tangent lines of the Absolute are the lines at
infinity. .

Proof. A “line at infinity,” being the axis of a pencil of
parallels, is an ideal line which contains a peint at infinity;

*Dehn {1], pp. 431-436; Forder [1], p. 338; Hilbert 1}, p. 147.

,‘\
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t.e. it is a tangent line of the Absolute. Conversely, if m is
any tangent, its polar linc m’ is another tangent having the
same point of contact. The reciprocal pencils detersnined by
these lines both belong to the same bundle of paralicls, and
each is a pencil of parallels (as defined in §9.3). Hcnce m agd,
m’ are lines at infinity.

oS\

It follows that the lines and planes through a gpoint A,
parallel to a plane p (not through A), are the generacors and
tangent planes of a cone, which joins A to thesseetion of the

7

Absolute by p. ~N

By a naturai extension of the above termin‘blogy, we define
a plane af infinity as a tangent plane of the*Absolute, or as the
polar plane of a point at infinity. Ilfkﬁs a plane at infinity is
traced out by the lines at infinity iithe planes of a bundle of
parallels. Other ideal planes are sxid to be wltra-infinite; they
are the polar planes of ordingijy: points,

The points at infinity of \an ordinary plane form a comnic,
which separates ordinary{interior) points from ultra-infinite
points. Secanis of the, tonic are ordinary lines, tangents are
lines at infinity, aqﬂ, exterior lines are ultra-infinite. A plane
at infinity contﬁhs just one point at infinity, namely its pole
{point of coz}.tz-}ct), and contains a flat pencil of lines at infinity.
Its other paints and lines are ultra-infinite. Finaily, an ultra-
inﬁnitg\ﬂ*&ﬁe consists solely of ultra-infinite points and lines.
Th“‘,\Kjﬁhe pairs of polar elements may be summarized as follows:

43" Ordinary points Ultra-infinite planes
Planes at infinity
Ordinary planes
Ultra-infinite lines

Lines at infinity

Ultra-infinite points
Ordinary lines
Lines at infinity

'I"his completes the proof that hyperbolic geometry is both
consistent and categorical. It is categorical (or unique), since
Axioms 8.3, 9.1, 9.61 suffice for the construction of Cayley's
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Absolute (§8.1); and it is consistent, since the Cayley-Klein
model satisfies these axioms (as the rcader can easily verify).
We have seen also that Euclidean geometry can be based on
Axioms 8.3, 9.1, 9.51. Hence either axiom of parallelism is ~
independent of the axioms of order, continuity, and congru-
ence. 'FThis means that Euclid is vindicated: his decision 50\
include "Postulate V'" among his basic assumptions is en@relj’

jnstified. |\

s
S 3

9.8. The geometry of a bundle. It is interésting to sce
how Theorems 8.54 and 8.81 are affected bytieintroduction
of congruence. The absolute polarity induces a two-dimen-
signal polarity in any bundle whose centreignot self-con jugate.
This polarity will be hyperbolic or gllj}tic according as the
bundle does or does not contain seifscénjugate lines (tangents
of the Absolute), i.e., according.’{i's the centre is exterior or
interior to the Absolute. Henge
2.81. The geomeiry of lq{nés: and planes through an ordinary
poini can be édenzif—iedm@zk the elliptic geometry of poinis and
lines in @ plane, and, )

9.82. The geome&ry\af lines and planes through an uliro-infinile
point can be idﬁfﬁt@fied with the hyperbolic geomelry of points and
lines in an,q?iﬁ\nm‘y plane.

In 9.8 the elliptic polarity is the correspondence between
perpefidicular lines and planes through the given point. In
bathicases, perpendicular planes are represented by perpen-

wjiﬁuiar lines. In 9.82, the given lines and planes are all per-

N pendicular to one ordinary plane (the polar of the ultra-infinite

point}, and can be represented on that plane by their sections.
Analogously,

9.83. The geomelry of lines and planes through a point al infin-
ity can be identified with the Euclidean geomeiry of poinis and
lines in o plane.
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Proor. Let M be the given point at infinity, and p its
polar plane. Apart from p, all the planes through M are
ordinary. In u itself, the pairs of polar lines through M con-
stitute an absolute involution, which tstabhshu a Luchdea\n
metric in the bundle of parallels.

This result is remarkable, as showing that every{thebrem
of Euclidean plane geometry has its counterpart in lwperbolic
solid geometry. For instance, the counterpart €19.561 is:*

-9.84. If a plane p is parallel to a line |, lke%&i‘s‘ nnly ene plane

through | which does not meet p in an ordmary line.

This unique parallel plane is, of cou e\\lm where m is the line
in which p meets the polar plane,} of\-e point at infinity (1, p)-
In other words, it is the plane through 1 perpendicular to g,
where ¢ is the plane through Pperpendicular to .

It is interesting to notjcé ‘that 9.81, 9.83, and 9.84 hold also
for Euclidean geometry. and 9.81 for elliptic geometry. To
sum up, the geomatxy of a bundle is elliptic, or Euclidean, or
hyperbolic, ac {dmg as the bundle is proper, or a bundle of
parallels or aXudle of ultra-parallels.

*Sommeﬁvﬂle (2], p. 50



CHAPTER X

HYPERBOLIC GEOMETRY IN TWO DIMENSIONS

10.1. Ideal elements. As a sufficient set of axioms £or)
plane hyperbolic geometry (based on point, imermedmcy;sﬁnd
congruence) we may take 8.311, 8.313-8.317, 8.32, 914-9.15,
and 9.61 (along with the denial of 8.318). It is, of course,
possible to prove such theorems as 8.92 and 9.69'\"x‘ri}hout using
ideal clements.* But the advantage of pointi\ai infinily has
alrcady been seen, and the reader will fifid*that many pro-
positions can be handled very expeditiously with the aid of the
powerful machinery of projective gemetry.

By considering flat pencils of parallels (namely, lines par-
allel to a given ray) and flat peneils of ultra-parallels (namely,
lines perpendicular to a giveniline) it is possible to introduce
ideal points into the plag®, and to distinguish certain classes
of them as forming ideal lines.t But the three-dimensional
treatment of Chap Sevin and 1X is more satisfactory, as it
allows all kinds ghpoint, ordinary and ideal, to be covered by
a single definifitn’ (§§8.6, 8.7). Accordingly, we have used
Axioms 8.3&»& 8.319, and defined the absolute polarity in terms
of recipréeal pencils of planes (§9.7), obtaining an oval quadric
as th&%ﬁs of points at infinity. When we restrict considera-
tiodtto a single ordinary plane, the points at infinity that

»(éz?lain form a conic (the section of the quadric by the plane).

N\ From now on, we shall reserve the name Absolute for this conic,

as we shall be concerned almost entirely with two-diménsional
genmetry.

Two ordinary lines are perpendicular if and only if they

*See, for instance, Carslaw [1], pp. 45, 55.
1Bonola [2], p. 231. Ci. Owens I,
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are conjugate with respect to the Absolute. The lines per-

pendicular to an ordinary line r form a [lat pencii whose centre
is an ultra-infinite point R, the pole of r. Uonversely, any two
ultra-parallel lines (through R, say) have a commion perpens
dicular (namely r}. The poles of the lines through an ordinagy

- point A are the points of an ultra-infinite linc &, the polaof A.

The poles of the lines of a flat pencil of paralicls if.¢®yef"the
lines through a point at infinity, M) arc the poinis ’f\a line at
infinity (namely the polar, m). Each line at mhm" heing a
tangent to the Absclute, contains its pole, v»l'uh&‘i'n. rest of its .

points are ultra-infinite. Thus the pair§ af ‘polar elements

{cf. page 196} are as follows: N\
Ordinary points \Llltra-mfunw iinegs
Points at infinity {\Y Lines at inlsity
Ultra-infinite points ,} N Ordinary lines

.‘. -

10.2. Angle-bisectors,. As a striking instance of the
difference between the classical and projective methaeds, let us
take the familiar thgérem which gives a triangle an in-centre,
and show that tH\ﬁs Brianchon’s Theorem in disguise. '

10.21.  The irdternal angle-biseclors of a triangle are concurrent.

NS
CLA;S{CAL ProoF. By considering congruent triangles, we
see that\every point on the bisector of an angle is equidistant
from\ € two arms of the angle. Hence the point of intersection
oftwo (internal) angle-bisectors of a triangle is equidistant

{ :from all three sides, and so lies on the third angle-bisector t0o.

ProjeCTIVE PROOF. Since the two parallels to a line

‘through a point are equally inclined to the perpendicular, the

internal bisector of an angle NAM, with M and N at infinity,
1s perpendicular to MN, and so joins A to the pole of MN,
which is the point of intersection of the tangents at M and N
to the Absolute. (See frontispiece.) Hence the angle-biscctors
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of a triangle ABC are the diagonals of the simple hexagon
whose sides are the polars of the six points at infinity on the
three sides of the triangle. Their concurrence now follows
from 3.36.

10.3. Congruent transformations. We have seen that
the ordinary and ultra-infinite points on an ordinary line @¥e)
scparated by two points at infinity, sayM and N (p.175), which
are the double points of the involution of conjugate points on
the line (see 9.73). In other words, conjugate poifity (such as
g, R, or D, S, in Fig. 9.74) are merely harmbbic’ conjugates
with respect to Mand N. A one-dimensionahgongruent trans-
formation is thus a projectivity which7aither preserves or
interchanges M and N, as in §5.8 (only now these are real
points). The translation A¥g, taking A to B, is the projec-
tivity by which A M NxB M N;fand the reflection ,®p is the
involution (A B)(M N). Thidaspect of translation shows at
once that two segments_ABfand CD are congruent if

ABMN z; CDMN.
It follows (see §81)\that the distance AB is proportional to
i log {AB, MN |}, ‘In order that our unit of measurement may
agree with Lobatschewsky’s, we choose the factor of propor-
tHonality to(be'k =2, so that
1031. 0>  AB=1} |log {AB, MNJ|.

We turn now to the consideration of two-dimensional
{ralisformations. In marked contrast to 6.42, which shows
~Jbat there is essentially only one kind of congruent trans-
formation in the elliptic plane, there are four kindsin the hyper-
bolic plane: ' .
(i) Rotation,
(i) Parallel displacement,
@3ii) Translation,
{iv) CGlide-reflection.
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Each of these can be expressed as a product of refleciions, the
reflection in a line OO’ being the transformation that preserves
every point on this line, but replaces every other point A by a
different point B, such that AOOQ’ and BOO’ are congruent
triangles. A rotation is, as usual, the product of r'eﬂer:tion}_
in two intersecting lines. A parallel displacement is theypro-
duct of reflections in two parallel lines; it can be regarded as
a rotation whose centre is at infinity, since it shifts'the lines
of a pencil of parallels just as an ordinary rotatiofn shifts those
of a proper pencil. A franslation is the prodidt of reflections
in two ultra-parallel lines; it induces a onesditnensional trans-
lation in the common perpendicular of the ‘two lines, which is
called the axis of the translation. 'A\glide-reﬂecﬁim is the

" product of a translation with the, teflection in its axis. The
reflection itself can be regarded as'the special case when the
extent of the component trapslation reduces to zero. Being
composed of an even numb'ér' of reflections, (i}, (ii}, (iii} are
direct transformations; but '(iv} is opposite.

The only essential‘difference in Euclidean geometry is that
there the lines perpendicular to a given line form a pencil of
parallels, so tha}\the distinction between a translation and a
parallel displacément is lost, and a translation has infinitely
many “axs™ instead of only one.

T}‘l.l'-{ fbﬁowing projective considerations suffice to show that
the.ébai«'e list is exhaustive. Since a congruent transformation
is’;é collineation which preserves the Absolute, it is completely

. (“determined by the projectivity it induces in the Absolute
. ) itself.* (The transform of any line is determined by the trans-
forms of its two points at infinity.) We saw, in §3.4, that any
projectivity on a conic has a centre and an axis {which are pole
and polar), and that in the hyperbolic case the projectivity is
opposite or direct according as two corresponding points do or

*Veblen and Young [2], II, pp. 353, 355.
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de not separate the double points. Hence the various possi-
Bilities, in the same order as above, are as follows:

(i) Elliptic projectivity,
(ii) Parabolic projectivity,
(iii) Dircct hyperbolic projectivity,
(iv) Opposite hyperbolic prajectivity. O\
In the first case the centre is an ordinary point; in the seéo?ld.
both centre and axis are at infinity; in the last two g}ﬁé’*&xis is
an ordinary line. Thus Fig. 3.4a illustrates a gljlf@-reﬂection.
We saw, in §3.3, that a conic is preserved by any harmonic
homology whose centre is the pole of its axis., YWhen the conic
is the Absolute, such a homology is a cox}g{’uent transformation
of period two, namely the reflectionjin’a point or in a line
according as the centre is ordinary orltra-infinite. (See §3.4.)
Thus again, as in §6.2, a reﬂeqtieﬁ"is a harmonic homology.*
This may be seen directly in F*1g 3.1, if we take B and B to
be the images of A and A’"by reflection in 00’ (so that the
angles at O and O' arem'rgg‘ht angles, and Q"' is the pole of 00").
The above reni%s’provide a one-dimensional projective
model for two-diménsional hyperbolic geometry, congruent
transformations of the hyperbolic plane being represented by
projcctivit'e’s: on a conic, or on a line. Among these pro-
jectivities,{dny involution, elliptic or hyperbolic, represents
the r‘eQect'ion in a point or in a line, respectively. In this
segse,, points and lines are themselves represented by involu-
...sti;c}l’l’s, and the condition for incidence is that the involutions
S_be permutable. We may say alternatively that each line is
represented by a pair of points, the double points of a hyper-
bolic involution. Essentially, we are representing a line by
its two points at infinity, and then transforming the Absolute
into a line by “‘stcreographic projection.”

*Tbid., p. 352.
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10.4. Some famous constructions. Tn 9.69 we considered
Hilbert’s construction for the common perpendicnlar to two
ultra-parallel lines. We may now describe this more simply
by observing that s’ is derived from s by applying o ‘L'ranslat'@n
with axis r, while D’ is derived from D by applying the ir'verse
translation. The following three problems are concerficd with
drawing lines parallel to a given ray. O

10.410 Given o point A and a line q, consiruct ihe porallels
log i}iﬁbﬁgh A -
) (QCC{NSTRUCTION.* Through A draw r perpendicular to g, and
aSperpendicular tor.  (See Fig. 10.44.) Through any point C
() bn g, draw t perpendicular to s, On t, locate D and D’ so that

)" AD=AD’=BC, where B is (@, r). Then AD and AD’ are
paralle] to q.

ProoF.f Let M and N be the points at infinity on g, and
M’ and N’ the remaining points at infinity on AN and AM.

*Bolyai 2], §a4. :
tBaldus [1], p. 102, Mohemann [1], p. 108.
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Construct R={MN, M'N’) and S=(MM’, NN’). Then AS,
the polar of R, isr; and AR, the polar of §,is 8. Being perpen-
dicular to s, t passcs through S; and the points where t meets
AM and AN satisfy the relations
N'ADM 5 NAD'M' ¢ NBCM,
which are the projective equivalent of AD=AD'=BC. These,
£\

points, therefore, are the same as the D and D' previgusly-
obtained by drawing a circle around A. - AN

7%
& ™™

10.42. Given two rays, p and p’, consiruct tkﬂ“gﬂcommon
paralicl. %)

CoxsTRUCTION.* Let M be the point atiffinity on p, and
N on p’. Through any point A on p, dr WAN parallel to p’.
Through any point B on p’, draw Bl\{I‘p'érallel top. (See Fig.
10.48.) Then the bisectors of £NAM and ZNBM are ultra-
parallel, and their common pp}b‘endicular is the desired
line MN. IR -

O " Fic. 1042

PrROOF. We have already seen (in the frontispiece) that
the bisector of an angle NAM is AQ, where Q is the pole of MN.
Hence the bisectors of ZNAM and ZNBM meet in the ultra-
infinite point Q, and MN is their common perpendicular.

*Cf. Hilbert [1], p. 151.
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10.43. Given a line 1r and a ray p, construci the line which
s perpendicular to r and parallel to p.

ConstrucTION.* Draw p’, the image of p oy reflection in
r. Then, clearly, the desired line is the common parallel\e p
and p’. . O\

. O

10.5. An alternative expression for distance.) It is some-
times convenient to replace 10.31 by a fogmizla:resembii_ng
5.76 instead of 6.81. Such a formula gan, Most easily be
obtained by using abscissee, with the inveMtion of conjugate
points in its canonical form \\~

rx'—1= 0
so that the points at infinity, M and N, have abscissae &1,
and the abscissae of ordmary points lie betwcen theze hmlts
Let x and ¥ be the absmssaé of A and B, so that ™ and y™*

are those of their respectlve conjugates, A’ and B'. Then, in
terms of Lobatsche{\?sky s unit of measurement, we have

JETIN S _ (x—1) (y+1)  (1—x) (1+y)
‘AB\MN} Gt D) (1) ~ (L+x) (=)’

whence "\.3“

10. 51a cosh AB =3 (AT 4-¢—4F)
\“ 1( A-m)+y) /L0 =y)

\ (1 +2)(1-) (1= (1+2)

= 1-0+y)+14+x)1 -
2\((1 +x) v (L—x)v {1 4+3)v(1—)

1—xy (x1—y) (y1—x)
T Y= Vo=

=+ {AB, BA} =+/{AB, B'A’} .
“Carslaw [1], p. 76.
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This is, of course, the same as the expression for cos AB in
elliptic geometry. In fact, every metrical formula of elliptic
geomeiry leads to a corresponding formula for hyperbolic
geometry when we multiply each distance by 4. There is
nothing surprising in this prinéiple, which arises because both
these geometries are special cases of the complex non-Euclideaf )
geometry whose Absolute is the general quadric in comglex”
projective space. ~\ R

By 9.81 and 5.76, the angles between two inters'ecjting‘lines

N\

a and & are given by P\

10,52, cos £ (ab)==+/{ab, b'a'}

where 2’ and b’ are the respective perpendicha’rs through the
point (a, b) in the plane ab. W

X 3
A

10.6. The angle of parallelism, “Problem 10.41 enables
us to construct the angle I{¢) fofavgiven segment of length ¢.
Conversely, 10.43 provides thelength corresponding to a given
{acute) angle. The functional relation between ¢ and Ti{¢)

may be found as follows{
s\ J

Fic, 10.6a

Let AM or p be one of the parallels from a point A to a4
lineq. ThroughA, draw r perpendicular to g, 8 perpendicular
to 1, and o perpendicular to p, as in Fig. 10.6a. Then a, the
polar of A, meets p, g, 1, 0in O, R, 5, P (the poles of o, 1, 5, P).
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|
The polar of M contains P, and meets 1 in Q (the pole of q).
Hence

M
ABQS X ORPSzpsor. \
Since 8 and Q are conj ugate to A and B, respectively, we have
cosh? AB = { AB, Qs} )
Since o0 and s are perpendicular to p and 1, respec ,vcly we
have
cos? £ (pr) = {pr, so }, sin*Z(pr}= {{s; m} '
and cosec? Z (pr) = {ps, or} ;20
Hence the relation between the dlstancg = AB and its angle
of parallelism ¢’ =1{c)=Z(pt) is 7>
cosh ¢=cogeC'¢’,
or sinh ¢ =cot ¢/, or tanh ¢ =cos &> Another form of the same
relation is cosh ¢—sinh ¢ =e@8ec ¢’ —cot ¢/, or
eF S tan 1c.
Thus* N\
p §I(c) =2 arctane
10.7. Dlstahbe and angle in terms of poles aand poiars
Ifaandb a,re“the polars of A and B, we may put 10. Bl intea
form analegous to 6.71, namely
- 10, 71"\' Y AB=arg cosh +/{AB, ba} .

%\nce the shortest distance from a point A to a line q is
.a,h:mg the perpendicular AQ, it is
NS ) " arg cosh v/{Aq, Qa} =arg sinh v/(— {AQ, qaf).
\J Similarly, the distance between two ultra-parallel lines g and s,
" measured along their common perpendicular, is
10.72. arg cosh \/{q, SQ} .
For the angle between two intersecting lines, 6.72 can be
carried over in the form
10.73. Z(pt) =arc cos (:t\/[pr, RP])

*Lobatschewsky [1], p. 633,
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10.8. Canonical coordinates. The simplest coordinates,
for most purposes, are given by taking the Absolute in
its canonical form 4.56, so that the polar of (xg, %, x2) is
{—xq, %1, 2], and the condition for lines [ X] and [¥] to be
perpendicular is

Xo¥Vo=X 1 Vi + X, Ye \\
Then the point (x) is ordinary, at infinity, or uitra-inﬁn}tc,
according as N
xuzaxlz—xgz ¢

is positive, zero, or negative; and the nature ¢f the line [ X]
depends similarly on the sign of — X+ X%+ X% Since
theae coordinates are homogeneous, there i&no loss of gener-
ality in assuming that x,=0; then x9\is) positive for every
ordinary point. QO '

By 10.71, the distance betweenJ#) and (y) is*

10.81. arg cosh ,‘/M
{x X} {9¥]
—arg coshs KoVo— X1¥1—XeV2

) '\‘..{/(xoz—xﬁ" —x) v/ (¥l —yif —¥e)

The condition fer this expression to vanish is

(xoyo — BaYar—xzya)? = (%o® — 22 —x) (yd— 3.t =y,
or — (18T xay )2 (xaye — %oye) P+ (Fay 1 — %1y0)* = 0.
This car hﬁﬁapen either when (x) amd (y) coincide, or when
their joulis a line at infinity. The latter possibility {which
sugg\eéfs the alternative name '‘null lines” for lines at infinity)
fsshet so paradoxical as it looks, when we remember that it
}n}rolves applying 10.81 to the ideal region, where distance has
not hitherto been defined.§
Similarly, the distance from (x) to [¥]is
*Klein [3], p. 185,
1Schilling [2]. Physicists will recognize this ideal region as a two-
dimensional de Sitter's world, whose time-like and space-like lines are our
ordinary and ultra-infinite ines.

14
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10.82. arg dink 1/ (_ %)

| Xo Yot Vitx, I’MI[ .
(ot —aif —:'!sz)\/( — Vi Y V) £\
This vanishes only when (x) lies on [ ¥]. N
The distance between non-intersecting fines [ 1] antN¥] is
fx ¥}y X} . O
[x.X“yY} .“'(“.;:
|. — X Vot AV + x\(zéf—' i
V(= Xt X4 XDV e Ve FY)
which vanishes if A
" 10.84. (X, Vam X, Vi — (X W Ko Vaf
_(Xu ¥,— X.I‘YQ)I = 0,
., if the lines are parallel. Hefce, when a vari
" ultra-parallel to a iixed 1ineva,n’<3“passing through = ixe
rotates towards either of the positions of paral
tance between the lines tends to zero. Inother w
lines approack one aoiher asymplotically ™
Finally, the ae\ifﬁé angle between intersecting lines [X]and

1 ¥} ist N
10.85. ;{rp\’('f'%)"s" /‘/ M

=arg sinh

10.83. arg cosh

=arg cosh

¥

]

RS lxX{yYl N
3"\:’231'(: cos ||—X0Y0+X1Y1+Xgr'gi o X
N\ (= X X2t X (= Vot Vit V)

The condition for vanishing is again 10.84.1 Hence, when two

.. parallel lines arise as the limiting form of two intersecting lines

‘whose point of intersection recedes to infinity, the angle be-
tween the lines tends to zero. Thus a singly-, doubly-, of
trebly-asymptotic triangle may be regarded as having one,
two, or three zero angles.

*This is one of Saccheri's theorems, See Carslaw [1], pp. 56-38.
Klein [3], p. 185.
iBonola [2), p. 171,
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10.9. Euclidean geometry as a limiting case. The for-
mulae of §8§6.7 and 10.8 can be unified by inserting a para-
meter K, which takes the value 1 for elliptic geometry and —1
for hyperbolic. Then the distance between points (x) and
{3) is \
10.91. S | xo}'u‘i'lej’l‘l‘szyz 1 \:__\

V(xt+ K +Kx?) v/ (32 + Ky + Ky
m}—arc sin 4/K { K{s1ys—xav1)®+ (2230 ~xoyz)3+(xug{§l'3c1yo)2}
N (x&—%Kxf-i—Kxf) (j—"oz +-KJJ1.2‘QCK}'22)
the distance from (x) to [ ¥] is \4

| %0 Vo b (K Vo VK
V(@i +Kef + By (K Va+ Y+ )
and the acute angle between lineg [} and [¥] is

| &Xﬂ’?n‘f' X Y1+ X, Y2|
VEXgk X+ XV (K Yo+ Y+ V)

arc co

1 .
10,92, ——arcsin
K

10.93. Arc cos

There is no harm {ingiving K other positive or negative
values. This merel$sheans changing the “unit point™ of the
coordinate syst.em}so that the absolute polarity takes the form

(2i%=K X, 11= X1 x9=Xs.
By mé,ﬁi“ﬂg K tend to zero* we obtain Euclidean geometry
with G@:}esiam coordinates x,/xa, x2/xe. For, the above expres-

signs\become, respectively,

~O° AR AL 7
V7 W E-ay(z-2)
Xo Mo 0 Vo, '\/(Y12+Y22)
P X1 Vi+Xe Vs |
(Xt XAV(Y2+Y2)

and arc cos

*Bonola [2], p. 162; Klein (3], p. 190.
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The factor 1/+/K in 10,91 and 10.92 indicates an infinite
magnihcation of scale as K approaches zern. Our conclusion
may therefore be expressed as. follows:

10.04. The geometry of an infinttesimal region is Euclidean!\

The analogous results in three dimensions arc the s,
save that [ X] is now a plane and the formulae acom,ﬂxcxtra
terms involving the fourth coordinate, When K L‘-‘;ld’a 1o zZero,
the absolute polarity ’ e\

xDEKX[]' xX1= Xl, Xa= Xﬂ, x;»‘—;\}fa
degencrates in the manner described in §40 5Y so that every
plane has its absolute pole in the plane a't\\uﬁmtv xp= 0.

There is thus a continuous traus(cmn from hvperbolic
geometry to elliptic, with Iiuclidean™or *‘parabolic’'} gecometry
occurring instantaneously on thg\widy. The absolufe guadric

KXy +X12+X§+Xs =0

_dlsappe'lrs when K ceases .to “be negative. But if we cnlarge

our space by including z:orrlplu{ points, we may say that the
quadric degenerates ifte an imaginary conic in the plane at
infinity when K =0,'and becomes an imaginary quadric when
K>0. (See §7,€;}
\<&
$ \. :
N\

ul



CHAPTER XI

CIRCLES AND TRIANGLES A
‘ ¢\

11.1. Various definitions for a circle. We have{"scen
that both elliptic geometry and hyperbolic geometryican be
derived from real projective geometry by singljﬁg out -a
polarity. In the present chapter, so far as.s<possible, we
give the definitions and theorems in such a ¥duf as to apply
equally well in either of these non-Euclidedn’geometries.

In §8.6 we generalized the conceptsd ‘bundle’” and “axial
pencil” (§2.1) in such a way that gapvdine and plane belong
to a bundle, any two planes toa p(;g‘u:’ih Those lines of a bundle
which lie in a plane of the bundlesare said to form a flat pencil
(§10.1). Thusany two coplatiar lines determine a flat pencil.
In the proof of 8.61, we saw* that any flat pencil can be con-
structed as a plane segk'@n of an axial pencil. We now make -
the analogous gener{iiz’ation of the concept “‘circle.”

A circle is the clmss of images of a point by reflection in the
lines of a flat pencil.* The lines are called digmelers, their
common poutt the cenire, and the absolute polar of this point
the axis, (In"elliptic geometry this will be seen to agree with
our previsus definition (§6.5). But in hyperbolic geometry
we hdve to distinguish three cases: a proper circle (the “circle”
0f389.1) has an ordinary centre and an ultra-infinite axis; a

\'“‘k;orbcycle has parallel diameters, so that its centre and axis are

4t infinity; and an eguidistant curve has ultra-parallel diame-
ters, all perpendicular to the axis, while the centre is ultra-
infinite. (Some authors use the distinctive word cycle for the
general circle in hyperbolic geometry, and distinguish the
three kinds as a circle, a horocycle, and a hypercycle.}

*Baldus [1], p. 140,
213
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Since the product of reflections in two diameters is a dis-
placement which can wvary continuously, an alternative
definition for a circle in elliptic geometry, or for a proper circle
in hyperbolic, is the locus of @ point under continuous rotalion
about the cenire. So also a horocycle or an equidistant gurve
is the locus of a point under continuous parailel displdcement
or translation, respectively. (See §10.3.) It follgwa that a
proper circle is the locus of a point whose dista}méf:"«.from the
centre is constant, say R, while an equidist At Jeurve 1s the
locus of a point whose distance from the axis 18 constant, say
D. According to this description, a circ@ in'elliptic geometry
is both a proper circle and an equidista@} Curve, with R+D=
ix, and “diametrically opposite’\pbints are images of one
another by reflection in the axis, \J

In hyperbolic geometry,vo.n’ the other hand, an equidistant

© curve is not obviously symmietrical by reflection in its axis.

To achieve this desirablésymmetry, we have to combine the
reflections in two cofjugate diameters, one of which 1s neces-
sarily ultra—inﬁniifh’ When this is done, the curve is seen to
have two separate branches, like a Euclidean hyperbola (or,
better, iike‘:.\tlie‘two parallel lines that can arise from an ellipse
by making the eccentricity tend to 1). It consists of the points
distapt, D from the axis on boik sides. Returning to our first

definition, we can describe the second branch as the class of

Jimages of the same point by reflection in the points of the axis
(which is the common perpendicular of all the diameters).

Thus a circle of any kind meets each diameter twice,
though in the case of the horocycle one of the points of inter-
section is the centre (at infinity). In this respect the horocycle

_resembles the Euclidean parabola.

“Since a circlé is symmetrical by reflection in any diameter,
the diameters through two points A and B on the circle make
equal angles with the “‘chord” AB. Conversely, this property
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is sometimes used to define a circle.* After Gauss, points A
and B on lines AA’ and BB’ are said to correspond when
LAAB= £ ABB'. Ifthelinesintersect (in an ordinary point},
¢{his means that A and B are equidistant from the point of
intersection. If they are ultra-parallel, it means that A and B
are equidistant from the common pérpendicular. But the
definition remains significant in the “‘intermediate” case pwherf
the lines are parallel; far it is still truef that the _prpg}efﬁ'jz of
correspondence is transitive for points on all lines af the con-
sequent pencil of parallels. Thus in all three cagi{s",’ the locus
of corresponding points on the lines of a peneil is’a circle.

P r

‘\“ g Fi:, 11.2a
1 :1\"'1‘}19 circle as a special conic. Many properties of
a circle are easily deduced from the fact that every circle is ¢
gonte.t This was proved for elliptic geometry in 6.51, where
“\W& obtained the circle as the Iocus of A=(BP, CQ), P and Q
being a variable pair of conjugate points on the axis. The
same proof can be applied to a proper circle in hyperbolic
geometry, and to an equidistant curve. In the former case

*Bonola {2}, p. 74.
tGauss [1], p. 207; Bolyai [2], §18-12; Carslaw [1], pp. 69-71, 80,

Klein {3], p. 177.
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(Fig. 11.24), OP and OQ are the biscctors of the supple-
mentary angles COA and AOB (or the internal and external
bisectors of ZCOA) and are evidently perpendicular to the
respective chords AC and AB. Thus a proper circle is the
locus of the point of intersection of perpendiculars from B
and C to a variable pair of perpendicular lines (OQ apd\OP)
through the mid-point of BC. o\ N

Ny

FiG. 11.28

In the casg'of the equidistant curve (Fig. 11.28), the axis 0
is the pegpén\dicular bisector of BC. On o, we have P ordinary
and Q J{IQ}é-inﬁnite for one branch, and vice versa for the other.
For tbe/first branch, PO is perpendicular to o, and the curve
is \the locus of the point where BP meets the perpendicular

" from C to PO. When P is either of the points at infinity on o,
\"\, “Q and A coincide with it; thus the points at infinity on o lie
on the curve (and connect its two branches), The proof of

6.52 remains valid, and shows that the absolute pole of any
diameter is also its pole with respect to the circle (or equi-
distant curve); whence the axis (which contains such poles) is

the polar of the centre. It follows that the tangents to an
equidistant curve from its centre are also tangents to the
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Ahbsolute (i.e. Hines at infinity). Hence

11.21. An equidistant curve has double comtact® with the
Absolute. :

(In complex geometry, the same statement can be made
for a proper circle, Cf. 6.92.) .

The horocycle has to be treated differently, since in.\'tl\ﬁs\ .
case B and P coincide with the centre O, at infinity. ﬁstl:iéfbre,
1ot C and A be two points on the curve, fixed apd, variable
respectively. Let N and L be the remaining poig@siét infinity
on OC and-OA, as in Fig. 11.2c. Then thielseflection that
carries C to A is a harmonic homology whose centre, Q, lies
on the axis o, as well as on CA and NL. 1(1}9_ 0O, N, C are fixed
points, we can apply 3.33 to the Abgslute, obtaining the pro-
jectively related pencils . WV
' OL = N,Q’K CQ.
Hence, by 3.34, the horocycledsa comic.

]

Fic. 11.2c

*Chasles [2], p. 324.
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One line of the pencil OL is o, the tangent at O to the
Absolute. The corresponding line of the pencil € is CO.
Hence o is the tangent at O to the horocycle siso.  In any
other position, OL is an ordinary line, and A an ordinary point.
Thus the horocycle has only the point O in common with the
Absolute. ' O\

When OL coincides with ON, NQ is the tangent at I to'the
Absolute, and CQ is the tangent at C to the horoc_’-.-'gié" Thus
6.52 continues to hold, and the contact of the hofhtvile with
the Absolute is such that each point on their, cox?nf i tangent
has the same polar with respect to both cahjes. o conics
so related are said to have contact of theitivd order.* This is
the limiting form of double contact whefi the two points of
contact become coincident. The hdwd¢ycle is thus exhibited
as a limiting form of an equidistanf eurve. It is obvicusly also
a limiting form of a proper cirdle! when the centre recedes to
infinity. In fact Lobatscheiigéky somctimes called it simply
the limiting-curve. P .,

2\Y

11.3. Spheres\’\i'l‘}:e extension of the above results from
two to three dimegsions presents no serious difficulty, A sphere
1s defined as t}\ié. class of images of a point by reflection in the
planes of 3 bundle. Its axial plane is the absolute polar of its
centre,_{(which is the centre of the bundle). In hyperbolic
geometry, a proper sphere has an ordinary centre {from which
alljf:’s points are distant R, say), a horosphere has its centre and
~ 513?13.1 plane at infinity, and an equidistant surface has an ordin-
ary axial plane {from which all its points are distant D, say}

and consists of two separate sheets.
To show that a proper sphere or an equidistant surface is
a quadric, we consider it as the locus of (BP, Cp), where B and
C are two fixed diametrically opposite points, P is a variable

“*Veblea and Young [2], 1, pp. 133-134.
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paint on the axial plane , and p is the line in which « meets
+he abgolute polar plane of P. _

n the case of a proper sphere, we have a variable line OP
through the centre O, and a plane Op which varies in such a
wezy as to remain perpendicular to OP. Then BP is the line
through B perpendicular to Op, and Cp is the plane through &)
perpendicular to OP. O ’

Tn the case of the equidistant surface, wis the perpendiptilar
hisector of BC. On o, we have P ordinary and p ul,tr'ja:-inﬁnite
for one sheet, and wice versa for the other. For tht*}ﬁ\rst sheet,
Py is perpendicular to «, and the surface is tie locus of the
point where BPmeets the plane through C pespendicular to PO.
For the second sheet, pO is perpendicularlo w, and the surface
s the locus of the point where Cp mects the line through B.
perpendicular to pO. N '

Tn cither case, BP and Cp trai:é Yorrelated bundles.® There-
fore the locus of their point'of ‘intersection is a quadsic accord-
ing to Seydewitz’s definition, which can be reconciled with von
Staudt's by means of @ehain of theorems analogous to 3.31-
3.34. \\ -

As for the hofogphere, let C and A be two points on it, fixed
and wvariable ‘ﬁes’ﬁectively, as in Fig. 11.2c. Let O be the
centre, N a,hdL the remaining points at infinity on OC and
04, apQ,B“the absolute pole of the plane OCA. Then the
reﬂf;cpi}n that carries Cto Ais a harmonic homology whose
cefitre, Q=(CA, NL), lies in the axial plane. Since the
““A¥solute is a quadric through the fixed points O, N, and the
variable point L, the analogue of Steiner’s Theorem shows
that the plane OSL and line NL trace correlated bundles. But
the Iatter bundle is collineated with that traced by CQ. Hence
OSL and CQ {(which meet at A) trace correlated bundles, and
the horosphere is @ quadric.

*Seydewitz [1], p. 158; Reve (1], pp. 26-38.
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The diameters of a horosphere are the lincs oi a bundle of
parallels. Any plane of the bundle mcets the other planes in
a flat pencil of parallels. Hence the section of the horosphere
by any *diametral plane" is a horocycle. Theorem 9.83 0o
gives S
11.31.  The geometry of points and horocycles on a hdxosphere
can be identified with the Euclidean geometry of poi wisend lines
in a plane. RO

This theorem, due to Wachter (§1.3), wag ethiscovered by
both Lobatschewsky and Bolyai, and is fithdarsental in their
treatment of hyperbolic trigonomctry..*\\:

'11.4. The in- and ex-circles o,f'é friangle. In discussing
the general triangle we shall usé :tl‘ie customary terminology
and notation, letting a, &, .gﬂ’enote the sides, A, B, C the
angles, ha, by, h the altitudes, r the in-radius, and ro, 74, o
R; R, Rs, R. the three exeradii and four circus-radii (when
they exist). r '

We have seerr (2:61) that three lincs BC, CA, AB decompose
the real project'v'g"plane into four regions, any one of which
can be singledPout as “‘the triangle ABC"' by naming an cxterior
line (or an igtetior point). The remaining three are Lhen called
the associated or colunar triangles,f In elliptic geometry, the
colunar triangle that has the same side @ has for its other two
sides\ b and 7 —¢, while its angles are 4, r— B, »—C. In
h¥perbolic geometry, we take A, B, C to be ordinary points,

(“ahd consider the one triangle ABC whose intericr points are all

a\"
%
_\z

ordinary (i.e., the triangle ABC/p, where p is any ideal line). .
The internal and externat bisectors of the angles 4, B, G,
are the loci of points equidistant from pairs of sides. In elliptic
geometry, they accordingly concur in sets of three at four
points, each of which is equidistant from all three sides. One

*Bolyai [2], §21; Klein 18], p. 252,
TM<Clelland and Preston i, I, p. 15,
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of these, being interior to the triangle, is called the in-cenire, 1.
The distance of this point from any side is called the in-radius,
#, since it is the radius of the inscribed circle. The rest of the
four points are the three ex-cemires, I, Is, Lo; their distances
from a side arc the ex-radii, ¥a, b, ¥ The escribed circles are
the inscribed circles of the colunar triangles. O\

%ost of these definitions remain valid in hyperbolic geon- *
etry. But some pairs of external angle-bisectors may bé par-
allel or uvltra-parallel. In such a case the trianglefhaf‘s an
escribed horocycle or equidistant curve, whose t"{fnéents are
the images of any side by reflection in the lirtes.of the pencil
determined by those two angle-bisectors. i \)

Bt is casily proved, as in Euclidean"g\ébmetry,* that the
lengths of the tangents from A to th@Jnscribed and escribed
circles are respectively ROy 4

s—a, s, s:ﬁ;é“—b,
where s=1(a+b+¢). . S

11.5. The circum-ciftlés and centroids. The above re-
suits can be dualized s follows. The internal and external
mid-points of thesides a, b, ¢, are the envelopes of lines equi-
distant from _pairs’ of vertices. In elliptic geometry, they
accordingly lie by threes on four lines, each of which is equi-
distant fresf.all three vertices. The “trilinear poles” of these
four Ii@'being the points of concurrency of the medigns, are
the seutroids G, Ga, Gu G. (See Fig. 2.48.) The absolute
,gal?é of the same four lines are called circum-cenires, since each

\is\’the centre of a circumscribed circle. One of the lines is
exterior to the triangle, and the corresponding circle is called
the principal circum-circle, Similarly, there is a principal
centroid.

In hyperbolic geometry, the mid-points of BC, CA, AB are

*See, e.g., Johnson (2], p. 184,
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joined in pairs by three lines, each of whick is, by 9.67, the
axis of a circumscribed equidistant curve {with two vertices
on one branch and one on the other). The extcrnal mid-points
of the sides are three ultra-infinite points lying on a line that
may or may not be ordinary. Hence there is either a fourth
circumscribed equidistant curve (with all three verticeg ‘erjone
branch), or a circumscribed horocycle, or a propéejoircum-
circle.* As for the centroids, only the “princip ;"“&m is neces-
sarily ordinary; any of the other three may Aot infinity or
ultra-infinite, o)

Fig. 11.5a

¢

O being the principal circum-centre, let 8, dencte the angle

ORBCE or'OCB, considered negative if O isinside the firgt colunar
téiangle (i.e., if O is “beyond” the side BC), with analogous

_~Mdefinitions for 8, and ., as in Fig. 11.54. Then

Oy t0,=4, 80,4+8.=B, ba+th=C,
and therefore

11.51. §.=S—A, 8,=5S—B, 0,=S—C,

where S=8,+0y+8,=HA+B+C).

Thus O lies on BC if S=4, i.e. if B+C=A4, and O is inside
the first colunar triangle if B+C<A4. Hence

sSommerville [2], pp. 54, 143,
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11.52. The principal c;_ircum-centfé is iniertor to the iriangle
ABC if and only if each of the angles 4, B, C ts less than the sum
5f the other two.

11.6. The polar triangle and the orthocentre, In elliptic
szometry, the absolute polars of the points A, B, C intersech,
in pairs at the absolute poles of BC, CA, AB, forming fournew
triangles. One of these, having sides r—A4, r—B, w—‘(f, and
angles r—a, 7—b, 7—¢, is called the polar triangieof ABC.
Clearly, its in-radius and principal circum-radi&f& ‘are jx— R
and ir—r. The relation between the origigal triangle and
its polar triangle is symmetrical. The in>and ex-centres of
either are the circum-centres of the otherl*“The same definition
ran be applied in hyperbolic geometpybut then, of course, the
colar triangle is entirely ultra-infinite. -

By Hesse's Theorem (8.21), ifthe respective perpendiculars
from A and B to BC and CAlmeet at H, then CH will be per-
pendicular to AB. In other*words, the “aititude lines” {which
join &, B, C to the corresponding vertices of the polar triangle,
as in 3.22) conc r'\é,t’a point H, called the orthocentre. In
hyperbolic geom%y, the orthocentre of an obtuse-angled

triangle may /e-ordinary, at infinity, or ultra-infinite,
e . AN

*McClellgnd and Preston [1}, I, p. 27; 11, p. &
o _
A
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CHAPTILR XII

THE USE OF A GENERAL TRIANGLE OF RETERENCES ™
b\
12.1. Formulae for distance and angle. Fao. m@ﬁy pur-
poses, such as the development of trlgonometr;, inig'desirable
to take the absolute polarity in its general form li,.),z, namely

- 12.1L X, =Cp, x“:CWX,."’:,\ («=0, 1, 2),
where Cop =6, and ¢, C,, =
We shall find it convenient to mdKe the abbreviations®
(&) =cux,y., [XH&C. X, L.,
sothat the hyperbolic Absoluteis the conic (xx) =0 cr [ X X]=0.
Since the polarity is not changed by reversing the signs of
all the ¢,, and C,,,, there i8no loss of generality ia assuming
_that (xx)>0 for one ordinary point, and therefors (by con-
tinuous varlat:on) {or all ordinary points. In hyperbolic
geometry this implies that (xx) < 0 for all ultra-infirite points.
Let [ X1 and be the respective polars of {(x) and (y), so
that, besides\12.11, we have a similar relation between the
¥’s and ¢'s.” Then since
07y, =x,Y, and C,X,V,=n,7,
wedive
dzhiz. (ey)={x ¥} =[X¥]={ Xy}.
~ ,\ Factors of proportionality have been suppressed in 12.11, and
\ so also here. This makes no confusion, provided we keep our
equations homogeneous in the coordinates of each point or
line.
In particular, { X ¥]=0 is the condition for lines { X] and
[ ¥] to be perpendicular, and (xy) =0 is the condition for points

*In the notation of Klein [3}, pp. 167-169, these are .y and Pyy.
’ ' 224
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{} and (y) to be perpendicular {or conjugate). More gener-

ally, the squared cosine of the angle between lines [ X] and

[¥]is _
{x¥}{yX} __ [XV]
(xX}{y¥] TXXII¥YV]

A
and the cosine {or hyperbolic cosine) of the distance betw,gen
points {«x) and (y) is 3

N

/‘/{xl’} fy X3 [ K7,
X} 7)) T VvV oo™

In elliptic geometry we have [ X X] = (x;QQ } for every line;
in fact both {xx} and [X X] are positive ‘definite forms. In
hyperbolic geometry we have [ X X] —{xx)> 0 for the potar of
any ordinary point, i.e. for any ultra infinite line; therefore
[X X1<0 for every ordmary Lme; Hence, according to the

convention of §6.7, the mterna ' angle between intersecting
lines [X] and [¥] is ) ’

_ —[X¥] (XY}
12.13. arc cos — -t ——— O ar¢ 0§ — "0
\/{’{\X’]\/[YY] ) V({[XX][YT])
in the two geometnies respectively. Alsq the distance from the
peint (x) to tHeline [ ¥] is

1214, ardein LY

—tt22 3 or arg sinh I |{xY}| '
A {ax)+/[ Y Y] v (@x)/(—[YY])

and, ';is we have already remarked, the distance between points
_@and G is .
4 | el N xy)
12.15. arc cos \/H(xx)\/(yy) or arg cos NV (33)
Finally, by 10.72, the distance between ultra-parallel lines
[X])and [V]is

12.16. arg cosh

Hxvl
\/([XX][YY])

15
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It is interesting to see how 12.15 was obtained &sfore Klein
had defined distance in terms of cross ratio. Caylry showed
that this expression has the additive property for juxtaposed
segments, by observing that the relation LN

(xy) (yz} N
S C7 ) I S L (
V) Vo) O Ty D

(z) 8 -
VR 4

implies the vanishing of the determinant N

arc Cos

= arc €os

(xx) (xy) (x2) lxX {eV}{xZ}] (%o %] (%o Yo Zo
(yx) (3’}') (y2)| = yX {yY yZ :’i\ yoylj’zl . !X: i
(3x) (2v) (32) {zX { {zY (L) |22 2 X2 Yo Za

which is the condition for the points (x}, (%), (2) to be col-
linear* (or for the lines { X}, TY], [Z] to be concirrrent, which
amounts to the same thing}.

12.2. The ggn@;:al circle. To obtain the equation for 2
circle, we use thefirst definition of §11.1, reflecting the fixed
point (y) in the Variable line [U] through the centre (). 1f(w)
is the absglyte pole of [U], so that (uz)= { Uz} =0, 4.41 gives
the ci;c{é. as the locus of (x) where

1221 x, =y, —2u,{yU} /{uU} =y, —2u,(yu}/ (wu),

@n'\d similarly Yo =2%,— 21, (xu)/ {un).

. ’; ‘Multiplying the first of these relations by ¢,,%,, the second by .

¢,,3,, and either of them by ¢,.2,, we deduce

(x2) = (wy) — 2(ww){yw)/ (u) = (yy), and (%) =(2)-

. These lead to the single homogeneous equation

(vy) (z2)? = (zy)* (xx).
(A factor of proportionality may be appended to x, in 1221
*Cayley 13], pp. 60, 81, '
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if desired. Then the final step consists in eliminating it.)
Hence the circle through (y) with centre (z) has the equation™

12.22. (2x)? =g’ (wx),
where g’ =(zy)*/ (y3).
In other words, the circle through {y) with axis {Z] has thé

equalion O
12,24, {Zx}2=g(ax), N\
whore g=1{Zy}*/ (33). Lo

in hyperbolic geometry, the above equationé fepresent a
proper circle, horocycle, or equidistant cucwe: according as
(z2) ={ZZ] is positive, zero, or negative, { Applying 12.15 to
{y) and (2}, and 12.14 to (y) and [Z], we'see that

g ={zz) cos’R or {zz) cosh’R Y\ ff?)r_a proper circle}
and g=[ZZ}sin:D or—{ZZ] smh‘D {for an equidistant curve).
No such expression for g" or gcan be looked for in the case of a
horocycle.  The form of equation 12.23 is clearly in agreement
with 6.92 and 11.21, ¢the "chord of contact being the axis
{Zx} =0. AN

In particular,(%hen the absolute polarity is expressed in
its canonical fofm, a proper circle with centre (1,0,0)is
12.24. x; =’(§:§+x§ +x3) cos? R or x5= (22—} —a;) cosh’R;
the horbcﬁy}fé ‘through (1, 0, 0) with centre (1,0, 1) is
12.25.}: (o~ xa)? =2 — 23 —x3,

,}yhi‘é‘h may alternatively be expressed as

V o} =2(wo—%0)%a;
and an equidistant curve with axis [0, 0, 1] is
12.26. 12 = (xh—x} —x}) sinh® D.

As an example of the use of general coordinates, consider
the familiar theorem that the polar of a poini with respect to ¢

*Sommerville (2], p. 138
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circle is perpendicular to the diameter through ihe poini. This
can be proved (for all kinds of circle at once} as follows. The
polar of the point (w) with respect to the conic 12.23 is the line

$Zw) {Zx} =g(wx). 8
From the form of its equation, we see that this is com‘m}rent
with the lines {Zx} =0 and (wx)=0, namely the axis of the

circle and the absoluie polar of (w)., Hence its@baolute polar
is collinear with the centre of the circle ani@ ») itself. The

desired result is now evident.

12.3. Tangential equations. Tzlép\'harn'iernic homology
with centre () and axis [U] may,\be expressed as a trans-
formation of tangential coordindigs by dualizing the steps that
led to 4.41. The result is ’:l

X=X, o800, ux}/{ul}.
This enables us to duahze the derivation of 12.22, so that the
circle touching [Y] mth axis [Z)] kas the tangential eguation
12.31. \\" ZXP=G1X X],
where L\ G =[ZY/[YY]L
In othef fﬁords, the circle touching [ Y] with centre (2} has the
tang&:{&ial equation

1232, ' {zX}zzG[XX],
Tbhere . =2 V|¥/[ VY]

Applying 12.13 or 12.16 to [Z] and [ ¥), and 12.14 to (z) and
i ¥], we see that

G' =122 cos*D or [ZZ]cosh®D (for an equidistant curve)
and G =(z2) sin®R or — (z2) sinh?R (for a proper circle).
Thus, in both geometries, G+¢’ = (s2) and g+G'={ZZ]. In
fact, we could verify directly that the tangents to the comnic
12.23 satisfy the equation [ZX]?=([ZZ]—g}[ X X].
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12.4. Circum-circles and centroids. There are two pos-
sible ways of applying coordinates to the study of the general
triangle. One* is to take the absolute polarity in its canonical
form, letting the vertices of the triangle be three general points | /5
{x). (v}, (z). The other, preferred here, is to take the absolute,
polarity in its gencral form 12.11 and to study the triangle of 7
reference, whosc sides and angles are definite functions of\the
coefhicients ¢, Y

in (‘HlptIC geometry, {xx) and [ X X] being pomtwé deﬁmte
forms, the “diagonal” cocfficients coq, €11, €22, €3¢, Cr, Coz are
positive, and we shall find it convenient to dendte their posi-

tive square roots by AN
R
Ly €1, €y CU! Cl! :C2t" /
The reciprocal determinants v angds ¥ are positive also.

In hvperbolic geometry, the vertices and sides of the
triangle of reference being orchnary points and lines, we have
s €11, Cze poSitive, and ng, Cu1, Cas negative; accordingly we
write £ N -

\(\\—\/Cnn; Co=+/|Cusl »

and so on. The absolute polars of the vertices, namel, the
. .

lines 2O .
»\‘[t:nu. 10, €20}, [601; C11e E21), [Coz) €1y, ¢

are ultr'\lﬁﬁnxte and so external ; hence the ¢, are all positive.
The Pbinte at infinity on the side x;=0 are given by the
'quddratlc equation

N/

2 . 2 o
11X +2512x 1%z +622x2 ={ +

hence yCop=c11622— 12 <0, and v is agaln p051t1ve
Since the coefficient of xg in {(¥x) is coo OF ¢, the general
cirele 12.23 passes through the point (1, 0, 0) if Z;= gcy, and

*Coolidge [1], p. 102; Sommerville [2], p. 139.
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through the other two vertices if Z} =g¢ and Z3 = gcs. Hence
the four circurn-circles are

12.41. (Coxoc1x1Ca%a)? = (x%);

and their axes (the absolute polars of the circum-centres) a}e
1242, [co, c1, col, [—¢o, €1, 62} (€0, — 1, €2], [0, €1, 26y’
Thus the principal circum-centre is [¢X1=0,0r _ O '

(Cpl] Cm Cnl cm sz Cl‘)' ....( .":

In hyperbolic geometry, there is a prope}:\ti:'cum-circle if

the axis [co, €1, ¢2] is ultra-infinite, i.e. if {ee}>> G; and there is a

" circumseribed horocycle if [cc]=0. pIn'the former case the
circum-radius R, being the distancg.‘rf(ém {1, 0, G} to the circum-

-centre, is given by O\
cosh R ;‘.’&_C‘.ﬂ-c—”—- .
2 Vewv/edl
Since co,Corf, =80,6, =omy this reduces to
12.43. \“R=arg cosh [ce] ™,

In eltiptic gse\&ﬁetry the principal circum-radius is found
more easilyp, Since jr—R is the distance from the pomnt
(1,6, 0) t{r"jchl_e line (¢, €1, c2], We have

x'\’...‘ sin (37— R} "—‘an\/ﬁon\/[“]a
so that’ ~ .

. 'ol‘A
- ) " The centroids, being the trilinear poles of the lines 12.42, are

) 12.45.

l’vl_}_) 11 1N /1 11'11#_l)_
) Gt N Rt ki
In hyperbolic geometry, the last three are not necessarily
ordinary points; e.g. the fourth is ultra-infinite if

12.46. - Tl g em  cm o 3

€162 Ca€g o€l 2

o/

R=arc cos [cc] .
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12,5. In- and ex-circles. The circle 12.32 touches the
line {1, 0, 0] if 28 =GCy =|G|C;, and also the other two sides if
s2=|G|C] and #;=|G|C;. (In hyperbolic geometry, G is
negative.}) Hence the in-circle and ex-circles are
12.51. (G XoxCi X 0 X=X X] |, N

¢\
anil their centres are a\
12,82, (Co, Cl; Cz)p (—Cl}p Cls C?)s (CEII _Cll C’)! (CU! C(],).':“'" CE)'

The in-radius, being the distance from (Cy, \Q. Cy) to
1,0, 0}, 1s :

1Z.33. r=arc sin {CC)~Y or arg sinh ({TC)‘*.
N

i2.6. The orthocentre, The vertices of the polar triangle
of the triangle of reference, being the absolute poles of the
sides [1, 0, 0], [0, 1, 0], [0, O, 1], arets _
(Conr Cioy Ca0)s (Cany ‘Qi;;:cm), (Cons C{:. Csa).
These are joined to the corresponding vertices of the original
triangle by the altitude-lines
0, Cso, —Cadl /= C1, 0, Catl, [C1a, — Caz, 0],
which concur atthe orthocentre (CaoCotr Cor1Crz C12Cre). IF
C12CaeCor =0 this is simply
12.61. O (,l_ ,1 _1_) .
\ 4 Ciz Co Cn ]
If’gbr}e of Cis, Caa, Coy vanishes, the triangle is right-angled,
apd the orthocentre coincides with a vertex. [f more than one
\”Bf them vanishes, the triangle has two (or three) right angles,
4nd the orthocentre is indeterminate. If one of Cis, Cao, Car.
differs in sign from the other two, the orthocentre is exterior.
(This is, of coursé, the case of an obtuse-angled triangle.)
In hyperbolic geometry, the orthocentre is ultra-infinite if

2612‘_ ) 2623 + 2601 <0,

———

Coo (51} =
LI Tl S L L LI Bk
Cis - Coiz  Coi + CwCn CaCiz CuCsuo
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Since g =7{C11Caz—C1s®) and 12 =7{CoCr1—C:ilra), this
condition is equivalent to
CuC;ze + Cz (:nn + Con (jn )
Ciz Caa Cn O\
_ 2CDD Cli . 2C11 ng _ 269 \ L
CQU Cﬂl Cﬂl ClZ C’I? G

o (Co_ Cn) (cm _ i) +(C12 CE« (o fcou)
Czu Cu Cul Cm Cm
. C'ZU CIE Cll
+(& 3(
Cl! \“Cﬂl -(ﬁ‘.ﬂ Cﬂx

L]
Cap Ca1 Cat C1a. \ €12 Cin

3+

<0\

or <
Can C1z Cus Cra Co Czu C’m'.Cgu Cr3Ca: Ca:Can
or .
12,62, CﬁD COI _I_ CU’LCH + Clﬂ CQD < 0’
- 12 N :' 620 a1

12.7. Elliptic tﬁgonometry By considering the model of
§6.1, we see that'the formulae of elliptic trigonometry must be
identical with*the familiar formulac of spherical tri; igonometry.*
Nevertheléss, it is interesting to derive them differently.

When.the points (x) and (y) of 12.15 are (0, 1, 0) and

oD, we have (xx) =cu, (xy) =cu, (yy)=ce. Hence, in
eLh'}ttc geometry, the sides of the triangle of reference are

Jgiven byt
AN
O c c
\”‘; V1271, cosa=-2%, cosb=-2, cosc=—-
€1C2 £a26n Coli
Since €11633— 192 = Cory, it follows that
. C, X :
51na=°—\/1, Sll’lb=—€l—1—/’—¥, Sinc.—_-%-
€18g : CaCp o

*See, e.g., McClelland and Preston {1], I, pp. 36-38, 50, 58.
tBaker (1], II, p. 205.
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Similarly, when the lines [ X] and [¥] of 12.18 are [0, 1, 0]
and [0, 0, 1], we have [XX] =C11, [XY] =C12, [YY]=C;:
Hence the angles are given by

12.72,
COSA=-——@ﬂ. cos B=— Cgo,cos C=—-_C—"—1- N
C1Ca 2 Co Cﬂc‘l .,'\”\’
Since C33Cas— Cit =col, it follows that i O
PNV S A M Yo avICH
Cl Cg - Cg Cu . QD'\Gl

To obtain the three colunar triangles, we merely have to
reverse the signs of two of co, 61, €2 and of the corresponding
two of Cy, C1, Co. To obtain the polar tlja\ﬁg e, we interchange

X

¢, and C,,, v and L. : PAN
When the point (x) and line [¥] of 12.14 are (1, 0, 0) and
i1, 6, 0], we have (xx) =¢os, {x¥} =1, [Y¥]=Co Hence the
altitudes are given by N\
cosec hg =cqCa, 08T o =¢, )y, cosec he==t2Cs
Thus sin @ sin . =si0 b sin ks =sin ¢ sin o= +/1/cocr0n,
sin A sin hy ——Xan Bsin hp=sin Csin k.= VT /CCiCy,
and we have t}\ze famous “rule of sines’: :
N - sinb _sino,
O~ sind sinB. snC
Tpf%{press the angte C in terms of the three sides, we have
thedormula
\”\; “¢in a sin b cos C= -—0017/6162260-_-(622501"61:530)/‘3153150
12.74. =cos ¢—cos & cos b.
Again, to express the side ¢ in terms of the three angles, we
have
sin A sin B cos ¢ =6F/C:CnCo=(— anCm+CnC=o)/C1CnCﬂ

12.75. =cos C+cos 4 cos B.
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From each such formula we can derive others by permuting
a, b, ¢, and simultaneously 4, B, C; e.g. 12.75 gives

sin B sin C cos a =cos A +-cos & cos C,

In a similar manner we may prove that N\
cot ¢ gin a—cot € sin B—cos a c0s B =¢,1(,:/ci6aCaCy =Q
cot a sin b—cot 4 sin C—cos b cos C=0, £\

and so on, N

By putting C' =14, we derive the following fﬁrmulae for a

right-angled triangle: -,\

sin a/sin 4 =sin &/sin B =sine)
0=cos ¢ —cos gCos 3,
sin A sin B cos ¢ =cos,d.c0s B,
sin B cos g =cos4,
cot ¢ sin @ —cos a»cos "B=0,
cot @ sin_ & ot 4 =0.
Collectmg these into a more convenient form, we have

12.76. sin a—s@ ¢sin A, sin b=sin ¢ sin B,
12.77. COS¢c. <-cos & cos b=cot 4 cot B,
12.78. cosBl =cos ¢ sin B, cos B=cos b sin 4,

+3n g=tan ¢ cos B=sin b tan A,
12.79. ) .
O™ tan b=tan ¢ cos A =sin a tan B.

| v}ﬁs noticed by Napier that the formulae for a right-
ang@i triangle are permuted among themselves by cyclic

' Qe:mutatlon of the five “parts” A, 3z —a, ¢, dr—0b, B. Il we
o\ remember this rule, we can deduce all the ten formulae from
'1277. By drawing the absolute polars of the vertices A and

B, Gauss showed that the five * ‘parts” in the above order are
the supplements of the angles of a pentagon whose five pairs

of alternate sides are perpendicular.* They are also the halves

*For a nicely llustrated description of this pentagramma mirificum, see
Mohrmann [1], p 72,
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of the angles of a hyperbolic pentagon ‘whose five pairs of
alternate sides are parallel.*

The result of using a general unit of length, as in 5.76,
would be to replace 12.74 by

T xa 7 . 76 . b .

cos—~=cos——cos—+sm-—sm—cosC, O\

2\ o\ 2A an  2n 20
where A is the length of a “right segment.” Makjg’g\ tend
i0 infinity, we obtain the familiar formula 7\

¢t =g2-4-bt—2ab cos C. .“‘}\\
This provides an alternative proof for K(.’l.94 (in the elliptic
PN\ :

case). (¢

1S4l
B ™ M

Fic. 12,85 %) FiG. 12.88
A

12.8. The radii. Continuing our investigation of the
elliptic geomnetry of the general triangle ABC, let Z and Z’ be
the poifits of contact of the side AB with the in-circle and the
first\axicircle, so that the triangles AIZ and AIZ’ are right-
zg.nﬁéd at Z and 2, as in Fig. 12.8a. Also let M be the internal

,\’nﬁd-point of BC, so that the triangle OBM is right-angled at
\'“\; M, as in Fig. 12.88. Applying 12.79 to these triangles, we
have, in the notation of §§11.4 and 11.5,1

12.8L. tan r =sin (s—a) tan 14,
12.82. tan r,==sin s tan §4,
and tan ia=tan R cos (§—A), whence

*Coxeter [2}, p. 123. .
tMcClelland and Preston [y, 11, pp. #12. . -
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12.83, cot R=cos (S—4) cot ta.
Formula 12.82 could have been obtained by applying 12.81

to the colunar triangle whose sides are @, x —b, 7 —¢; we merely

have to replace s—e by »—s. Similarly, repiacing S—4 by

7 —S, we deduce from 12.83,

12.84, cot R, =—cos S cot 4.

(This expression is positive, since S is obtuse.) .\ :

Alternatively, 12.83 and 12.84 could have bﬁen “obtained
by applying 12.81 and 12.82 to the polar trlang’ie, whose sides,
angles, and circum-radii are

7—A,v—B,x—C, r—a, m—b, :sr—'s\\'

N\ g
AN

P -

Ny

_ fr—r, Fuw ,\ra. dr—ry 3w —7o
By permitting a, b, ¢, and 4, B, C, we derive alternative
formulae for r and R, and analegous formulae for ra, 7o Re Ko

Since a triangle is determmed by its three sides, we lose ao
generality by putting either Co=C;=Cs=1 or cy=c1=cz=L1.
In the former case we\tfleduce

Cw —GQ&A Cow=—cos B, Cy1=—cos (|
12.85. ——l—cos" A —cos? B—cos? C—~2 cos A ces Beos G,
and sil\B/sin C sin g =+/T.
‘By 12.&4:;.\@ have

YR =T (ci+ei+65 +2C1erca+2Caeaco+2C01c061)

{

R N =sin? 4 +sin? B+sin? C—2 cos 4 sin B sin €
\m; "\. ' —2 cos Bsin Csin A —2 cos Csin 4 sin B,

whence T tan? R=2+2 cos (4 + B+C)=4cos? 5. Butcos S<0;

hence _

12.86. tan R=—2r"* cos S.

Moreover, the i in-centre, orthocentre and (principal) centroid
are now

(1,1,1), (sec 4, sec B, sec C), (cosec 4, cosec B, cosec C),



N
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precisely as in Euclidean érilinear coordinates.* In fact, we
can derive Euclidean geometry by making T tend to zero.
(C§. §10.9.)

The analogue of areal coordinates* is obtained by meking
the alternative specialization ¢o=¢1=cz=1, whence )
eSO\
4 ¢\ \.'0
12.87. ~+=1—cos? a—cos? b—cos? c+2cos ¢ cos b CoS\E,”

‘~

€12 =CO8 &, €20=C08 b, ¢y =008 ¢,

andt sin b sin ¢ sin A =+/7. \
Trom 12.53 we readily deduce _ \\
12.88. © cot r=2vtsins.

The coordinates of any point are the s@e\as in the previous
case, only multiplied respectively bysim4, sin B, sin C (or by
sin @, sin b, sin ¢). The principal,.cirCum-circle, in the form
(6162—61:)x1xa+(Caco*qu)ji;\xicB+(cuc;-cu;)xnx1 ={,
reduces to O

(sin? 4a)xuxe+{sin? 1B)xaq+(sin® dc)xox1 =0
This time we derive,EfLIEIidean geometry} by making + tend to
zero.  (Since we Have made two different specializations, we
no longer have 4F=1.)
&
12.9. /Hyperbelic trigonometry. By applying the methods
of §12.7 to hyperbolic geometry, we obtain the gides, angles,
and.a}tltudes of the triangle of reference in the form

SN . C
32.91. cosha= 2 o, sinha= (e , elc.,
) €1L2 €102
. T B
12.92. cos 4= -(—:E- , elc, sin A= '-;0—\/—, elc., -
j R Cl c! )

*Sammerville [4], p. 19.

{Thus v and I' are the 4n* and 4N* of McCletland and Preston [1} |,
pp. 42, 5.

tMilne [1}, p. 106.
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cosech k, =c,Cy , ele.,
and deduce*
12.93. sinha _ sinh b _ sinh ¢ o
: sind sinB sinC N\
12.94. sinh b sinh ¢ cos 4 =cosh b cosh ¢~-cosi: 2, gloy,
12.05. sin B sin C cosh a=cos B cos C+cos 4, (Ble.”
For a right-angled triangle (with C=4x), wa hawe
12.96. sinh ¢ =sinh ¢sin 4, sinh b —-smhﬁ{gl‘; E,
12.97. cosh ¢ =cosh a cosh b =cot 4 cot B/
12.98. cos A=coshgsin B, cos .B;—‘{QQSI’] bsin 4,
12.09. {tanh a=tanh ¢ cos B=sin}),w§( tan A4,
tanh b=tanh ¢ cos 4 =sihi¥z tan B.
All these formulae were, dlscovered by Lobatschewsky.

But he preferred to expresst them in terms of angles of paral-
lelism; e.g., he wrote 12, 98» in the form

sin B= sm II{&) cos A, sin 4 =sin H(b} cos B.

The result %{\usmg a general unit of lengt}a, as in §8.1,
would be to feplace 12.94 by '

cosh: ikd=cosh $xb cosh }xc—sinh 3xd sinh %xc cos 4.
Makmg\x ‘tend to zero, we see again that the geometry of an

ifesimal region is Euclidean. On the other hand, putting
x;ﬁ& instead of 2, we obtain the elliptic formula

\$

e N cos @ =cos b cos ¢-+sin b sin ¢ cos A.
“ Conversely,t hyperbolic formulae can be derived from elliptic

formulae by multiplying each symbol for distance (such as ¢
"or k) by 4,

We find, as in §12.8, that the radii of the general triangle

~ are given by

*Lobatschewsky {1], pp. 633-638.
{This is the device used by Taurinus; see §1.3.
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tanh r =sinh(s—a) tan $4,
tanh r,=sinh s tan 34, élc.,
coth R=cos(S—A4) coth %a.

The condition for a proper ex-circle beyond the side BC (or 8§
for a real r,)* is found to be _ O\
cos LA < sin §B +sin 1C. e\

Thus the conditions for three escribed horocycles are (5&, .
4 =B=C=2arctan} = arctan §, \\
implyingt ’ . Y
7] =4 =c=argcos_h%. '\\:-
By putting Cun=Cn=Cun=—1, sacthat Cin=cos 4, eic.
we find the hyperbolic analogue of ~12;86 to be
tanh R=2I=Xecs S,
where D= —1-4cos? 4 +cos}.§’—t—};os’ C+2 cos A cos B cos C.
Similarly, the analogue qf~12.88 is
gfgtﬁ\r=27" sinh s,
where y=1 —cosh‘“ﬁé cosh? b —cosh? c+2 cosh a cosh b cosh ¢.
The condition.12.46 for the fourth centroid G, to be ultra-
infinite is clearly equivalent to
N\ cosh a+-cosh b—cosh ¢>§.
Thus.a'.}}t'hree cen-troids are-at infinity if a=b=c=arg cosh §.
I;L\t}ﬁ's case there are three escribed horocycles; for, it follows
\'”fijer'n 12.91 that any triangle whose principal centroid and
in-centre coincide is equilateral, and that then the other
centroids coincide with the ex-centres. .
By 12.92, an obtuse-angled triangle has C1aCaCn <0
Hence, by 12.62, the condition for the orthocentre of an
obtuse-angled triangle to be ultra-infinite is

s American Mathematical Monthly, vol, 51 (1944), p. 600.
+Sommerville [2], p. 85 (Example 13).
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1 1

4 1
£12 Cu Cap Czo €01 Cor

or sech @ tan A -+sech b tan B-+sech ¢ ton € > 0,

or tanh a sec 4 --tanh b sec B4tanh c &0 > 0. O

>0,

We can study a triangle that is singly-, diubly-, or\trébly-
_ asymptotic by making one or more of ¢y, ¢, 74 tend\to ZEero.,

Thus a trebly-asymptotic triangle has <x:‘

6u=61=62=0, C';g:Cng, Py 612=C5\&"f, PRPR
3/2

and v =2¢1¢20001 =2CCi Cry In fack, $He Absolute takes
the form ::\\J
Cuxlxz-}' Clxgxn+62xox1 =‘0.:\C51"
V{Ce X n):*:w/(C1’X1')ﬂ:\/(52Xs}:0-
For such a triangle, 12.53 gweg

cosech? » = (CC) _MEGIECICE +2ngCzCu +ZCO V()Cl
% =6CCilaVy =3.

Thus* the m-radluS\f a trebly-asymptotic triangle is ¥ log 3.

More simply, 1t\§\geometr1cally evident that II{r) =%, whence
r =log cot 37}

*Som'n{e}?ﬂ'fe 21, p. 85 (Example 10).

. \"\‘
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CHAPTER XIII
AREA

i3.1. Equivalent regions. Two polygonal regions in a.
plane are said to be equivalent if they can be dissected.iq't?:-'.\
parts which are respectively congruent.* For instancey/in
Fig. 9.6D, the triangle ABC is equivalent to the isoscelés hirect-
angle ABED, since the parts CFJ and CFI of tl}gf\fdfmer are
congruent to the parts ADJ and BEI of the latter: That the
reiation of equivalence is transitive may. heé\seen by super-
posing two dissections to make a finer digsection. Regions
hounded by curves can be treated similérly, by regarding them
as limiting cases of polygonal regions..) _

This notion enables us to de.ﬁr’l:’ the area of any region in
terms of a standard unit. regjoﬁ,’ s follows. A region is said
tc be of area 1/n (where # 38 a positive integer) if the unit
region can be dissected(into # parts each equivalent to the
given region; and {‘eg’ion is said to be of area m/n if it is
equivalent to m juitaposed replicas of a region of area 1 /n.
By a natural 1i\niiting process, we obtain a real number as the
area of any\given region.

G

13\:% ““The choice of a unit. In Euclidean geometry the

unit \Of area is the square of unit side. In non-Euciidean’
mg’ééﬁletry there is no square, but only a “regular quadrangle”
N\whose angles are not right. By drawing the diagonals of this

*For the further refinements required when continuity is not assumed,
see Hilbert [1], pp. 58-60; Carslaw [1], pp. 84-80. It is remarkable that
the above simple definition for equivalence canaot be extended to three-

dimensional space. Two polyhedral regions may have equal volume
without being equivalent by dissection into a finite number of parts.

241
16
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figure, we dissect it into four isosceles right-angled triangles
(whose base-angles differ from §x). For such = triangle ABC,
with A =B, formulae 12.77 and 12.97 give

cos ¢ =cost g =cot® A (eliiptic),

cosh ¢ =cosh? ¢ =cot* 4 (kyperbolic).
If we make a tend towards zero, this more and more,élbs,e\ly

. . . - . 7'\
resembles a Euclidean triangle with ¢? =20¢% und 4 =im/ (See

10.94)  Accordingly, we adjust our unit so as ¥ “fake the
area A of the non-Euclidean triangle Satisf}f"\’\'

13.21. im2 = 1.
’ a0 fai :.\\:

We shall see later that, in elliptic.‘é@jmetry, our unit is in
fact the area of a birectangular triangle whose third angle is
one radian (or whose base is of unit length), while in hyper-
bolic geometry it is the area of & horocyclic sector of unit arc,
(The latter figure has the d-iéddvantage of extending to infinity,
but can easily be repl:gced’ by other figures that are entirely
accessible.) A
&

13.3. The'area of a triangle in elliptic gecmetry. Two

_ lines decomfigse the real projective plane into two angular

N
h
\ )

regions gﬂile&i lunes. (Such a lune has two sides but only one
vertex(vrlike a lune on a sphere.) In elliptic geometry, the
tw@ supplementary lunes are congruent if the lines are perpei-
dicular. By repeated bisection of such a right-angled lune,

{ve sce that the area of a lune is proporiional io its angle.

. 1If uf is the area of a lune of angle ¢, the area of the whole
plane is

0+ p(r — ) = pr.
Let A, Aa A, A, denote the areas of any triangle ABC and
its colunar triangles. (See Fig. 2.6a on page 35.) Then

A+A5=P-A| A+Ab=_uB, A+AC=FCI
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and A+AFAyHA=pm,
Heace* 2A =u(A+B+C—n).

This argument provides the simplest proof of the famous
inequality

1331 A+B+C>,
which can alternatively be deduced from 12.75 {(just as 1.3&:\
wag deduced from 1.31). e\

To evaluate g, we consider a right-angled triang,le}‘\\}ith
A =B =1r—e, so that X \ :
cos a=cot A4 ={1—tan ¢)/(1+ian e)."’}\\
and sin? @ =4 tan e /{1-}tan € A '
The ratio of the area of this triangle to thé}
right-angled triangle with equal sides 348
e _ M (ﬁlj‘.‘)g ¢ {1 Ftan o)
gt 2\ ¢ / tamse :

The imit, as ¢ and e tend tq‘z't';’ro, is u/2. - Hence u=2, and

';)f a Euclidean

13.32. In elliptic geomelry, tk;a areq 'of any triangle ABC is
@»\B +C—m.
N

13.4. Area if hyperbolic geometry.. The corresponding
result in hypesbelic geometry does not come so easily. Since
the plane igAow infinite, our only hope of an analogous method
will be %0 Work within some region whose area is known to be
finited %he main steps in the argument are given by the

qul{m’ﬁng chain of theorems.

U 13.41. A korocyclic sector has @ finite areq.

Proor.} Let H, Hy, H,, Hy, . . . be points even-ly spa'ced
along a line HM. Let these be joined to corresponding points
on a parallel line AM by horocyclic arcs HA, HiA,, HoAq, Hels,

*Klein {3], pp. 200-201.
4Suggested by Carslaw-(1], p. 120,
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A A,

B B] ;;2 A.s

C C, C B.J

Df——0r——] ——

———
K@\
H H, H, 11, O M
F1c. 13.44 N

. €% :

., with centre M (at infinity). On the arE;\HPa, take points
B,C,D,...,sothat \
AN\

HB=HA,, HC =H,A, HO=H:A;, ...,

and let the parallel lines BM, €M, DM, . . . meet the other arcs

at points B,, Cr, D,, ..., as in Fig. 13.4a. Then the trans:

lation along HM that takegrlﬁ to H, (and H, to H.y) takes

BB.B;...to AAsA;...,CEC:. .. to BiB:B; ..., and soon.

Thus the “curvilinearréetangles’” AB:, BCy, Cl3y, .. . are re-

spectively congruent o the curvilinear rectangles ABy, AiBs,

AB,, . .., whichtogether make up the horocyclic sector ABM.

By a naturalJimliting process, we deduce that this horocyclic

sector is equivalent to the curvilincar rectangle AH,, Thearea

of the given-sector AHM, being greater than that of ABM in
the ratio)of the arcs AH:AB, is still finite.

N
X ‘ }3.42. A trebly-asympiotic triangle has a fintle area.

~d ) Proor. Let LMN be a trebly-asymptotic triangle. Draw
/- LH perpendicular to MN, HK perpendicular to LM, and let
the horocycle through H with centre M meet LM at A, as in
Fig. 13.48. By 13.41, the sector AHM has a finite area; ¢
fortiori, so has the singly-asymptotic triangle KHM. By
reflection in HK, the arca of the doubly-asymptotic triangle
LHM is twice that of KHM. Finally, doubling again by
reflection in LH, the area of LMN is still finite.
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N

FiG. 13.48

Since any three points at infinity can beytransformed into
any other three points at infinity by_alprojectivity in the
Absolute, i.e. by a congruent transformation, we see that all
trebly-asymptotic triangles are congr,zwn‘t Accordingly, we let
ur denote the area of such a trlangle, 4 being a constant which
remains to be calculated. (The 3 1s inserted for convenience.}
It iollows that the area of.a rlght angled doubly-asymptotic
triangle, such as LHM, »Ls\%;.m-

13.43. The area\b‘ e donbly- asymptouc triangle of angle
645 u{xr—8).

Proor.* Det H be any point on the ‘‘doubly infinite” side
MN of the eﬁ}ubly asymptotic trlangle AMN, and let L be the
point at\\nf}mty on the ray H/A, as in Fig. 13.4c. Then the
areas_ of\the various triangles combine as follows:

AN ALM +ALN =AMN +LMN.
V' Hence, letting f(#) denote the arca of 2 doubly-asymptotic
rldngie of angle #, we have

f@8) +5(¢) = f(9 + ¢) + pm.
Differcntiating with respect to 8, while keeping ¢ constant, we
obtain

*Cf. Liebmana [1], p. 44; Schilting [1], II, p. 198.
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o~

o =1 L@
(Here we are letting M vary whilethe triangle ALN remains
fixed.) Since ¢is arbitrary,‘wé“cﬁ‘nclude that f7(8) is constant,
so that f () is linear. Thetwo special vafues f (0} = pr and
f (r) = 0 now determine \

N0) = ulr — 8).
&

13.44. In %&;‘é?balic geometry, the area of any iriangle ABC
is O r—A-B-C. -
Prod)® Let L, M, N be the points at infinity on B/C,
C/A~AJB, as in Fig. 13.4p. Then the trebly-asymptotic
t{iéﬁg’l'e LMN is dissected into four parts: the original triangle
+ABC; and the doubly-asymptotic triangles AMN, BNL, CLM
~O ‘Whose angles are respectively r— 4, = — B, »— . Hence the
) area - :
ABC =pr—pd —uB—pC=p(r—A4—B—C).
Ta evaluate x, we consider a right-angled triangle with
A=B=1r—e¢, so that
cosh a=cot 4 =(1-+tan ¢)/(1 —tan ¢)
and sinh? g =4 tan ¢ /{1 —tan ¢)2

*Gauss [1], p. 223.
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FiG. 13.4p ,”,\\':
. . NN
In this case 13.21 gives - P\
lim JJ(smh a) € (1 “tan o =1,
a tan.
whence p=1. o\

s"

i3.5. The extensmp\to three dimensions. The analogous
probiem, of finding Q& rolume of a tetrahedren as a function
of its angles, is vastiy harder, since this is not one of the “‘ele-
mentary functmns' at ail. In terms of suitably defined new
functions, howaver, the problem was solved by Lobatschewsky
(for nyperlqc'ﬁic geometry) and Schlafli {for sphencal and hence
ell;pch

Qne of Schiafli’s results may well be mentioned here, as itis
an"alogous to 13.32 and 13.44 in their differentiated form

\" dA =+{dA4 +dB+dC).
13.51. If 48B,. CD are the dihedral angles at the
edges AB, ..., CD af a zetmkgdmn ABCD of volume V, then

dV—:i:z(AB dAB+AC dACHAD dAD
+BC dBC+BD dBD+CD dCD).

*Lobatschewsky [1], pp. 608-610; Schlafli {1], p. 289 (for 5 —1 dimensions,
p. 287). : :
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The proof of this theorem, and the consequent expressions
for V itself, are beyond the scope of this book.

13.6. The differential of distance. A conlinmous curde\
may be defined as the locus of a point whose coordinates are
continuous functions of a parameter f. We assume f’u‘rther
that the functions have continuous derivatives. If s is the
distance between points (x) and (x-+A4x), whosd parameters
are ¢ and ?+At, we consider the curve as the lire3 a sequence
of broken lines, or polygons, formed by siialt: and smaller
chords, and define its leng!k* to be

N
s= lim JAs= 11m Z \(M—‘J §di,
A0 At‘ >
where 5= lim {As/m)

For purposes of differentiah \geometry, it is convenient to
normalize the coordinates, by ‘making (xx) =1, so that the dis-
tance between {x) and (y)Ms simply

arc c,os\ Yxy) or arg cosh (x¥).

13.61. {n.w‘rms of normalized coordinales, the differential
of distance™glong any continuous curve is given by
LT dst= x(dx de) = %, dx, dx,
th&e upper sign for elliptic geomeiry, the lower for Iy perbolic.

{

o % Proor. In elliptic geometry, the distance from (x) to
9 T (x+4x) is given byt
cos As = {x x+Ax) = (x )+ (x dx) =14 (x bx).

Since (x+Ax x+Ax)=1= (x x), we have 2(x Ax)+(Ax &%) =0,
and therefore

4 sin* 2As =2(1 —cos /_‘.s) =—2(x Ax) =(Ax Ax).

*Klein [3], p. 245.
tCoolidge [1], p. 187.
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Dividing by A# and passing to the limit, we find 2= (% %), or
in the notation of differentials,
ds? = (dx dx).
In hyperbolic geometry, we have similarly
-cosh As=1-(x Ax),
4 sinh? 3As =2(cosh As—1) =2(x Ax) =— (Ax Ax), A

. 2N
and ds? = —(dx dx}. N s
Thus, in terms of norin_alized coordinates with thg atgsﬁiute
polarity in canonical form, we have e\
kW,
13.62.° ds? = tdxt+ded+dxd \

in the plane, and O
ds? = -dugt+dut+ded +dEDT

NV

in space.

13.7. Arcs and areas of cizpfeh. The circle 12.24, in the
form o
r24xs :—*sivxi’2 R or sinh*R
(cf. .79), has the parg{iietric representation
Xp=C08 ,<w§=sin R cost, xz=sin Rsin?
or xo=cosh R, z;=sinh R cos /, %2 Zginh R sin ¢
(in the two géometries, respectively). Hence
) :;\'"”iu=0, %1 = - %z, L2 =%1,
and §\ i §=+/ (21 +%2")
R\ —gin B or sinh R.
. ;hi:teératin g from t=0"to ¢ =0, we deduce that an arc of angle ]
of @ circle of radius R is of length*
13.71. s(Ry=8sin R or ¢ sinh R.
Theorem 10.94 enables us to calculate areas by integration,
as in Euclidean geometry. Thus g sector of angle 8 of @ circle
of redius R has ared

*Carslaw {1], p. 118.
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R
13.72. J s(r)dr=6(1—cos R} or #6{(cosh R~1).
0

In particular,* a circle of radius R has circumference
2r sin R or 2rsinh R

and area N

- 13,73, 2r{l—cos R) or 2r(cosh R—1), ”\~\
Putting R =4+, we deduce that the area of the eihpm plane is
2w, in agreement with §13.3, \

By 13.71 and 13.72, the area of a sector. of“Qrc s (in hyper-
. bolic geometry) is ) \
s(cosh R-—~1)/sinh R=5 tafm iR
“Making R tend to infinity, we deduce}hat

13.7¢. Thearea of o horocychc»sector is equal to its arc.

(Cf. 13.41.) In other wordsjour chosen unit is the area of a
horoceyelic sector of unit are?
In terms of normalized coordinates, the horocycle 12.25
may be expressed gs’",\
' XN xe—w =1,
whence dxo =dgayand

P, ¥ “ ds—dx1
It follows"lshat a horocyclic arc of length s goes from (1, §, 0) to
™\
\ (14152, 5, 152).

The dlameter through the latter point meets the line x: =0 at
~7s,0). But thisline is the tangent at (1,0, 0). Puttings=1,
_y'We deduce the following characterization for a herocyclic arc
of unit length: the tangent at one end is pamllel to the diameler
through the other.t Thus, in Fig 13.48, AH is a horocyclic

arc of umit length, and AHM is a horocyclic sector of unit
area.

*Bolyai [2], §§30, 32 (IV).
- tCarslaw [1], p. 119,
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13.8. Two surfaces which canbe developed on the Euclid-
ean piane. Analogously, the horosphere through (1, 0, 0, 0)
with centre (1, 0, 0, 1) has the etjuation

(xo ~X3 2 =xg“ — 2 '—:l'-':,e —x,‘

or xﬁ-l-x'g“ =2(x¢.—-xs)xs.

In terms of normalized coordinates, this becomes Ko
xu-x3=1, ) \\ '

whence dxo=dx; and N

13.8t. ds? =dxit +dxs. \\

Since %:=23{x:?+xs?) and xo=1+x;, all four coerdinates are
expressible in terms of x; and x.. Thu:s.{l&.'Sl provides an
alternative proof that the intrinsic geometry of a horosphere
is Euclidean.  (See 11.31.) AN

The corresponding proof of the Same result for a Clifford
surface (7.86) is as follows. The obvious representation in
terms of parameters £ and f,ui,éf

wo=cos 4y cos £, x1=cos ¥ sin &
xz-——sinj\b}cos yn, %3=sin 3y sin
whenece LA "
dxo= —%:1dby, %1 =x.dE, Gxe= —xady, dxa =x201,
and ox '
G {dx dr) = (e +as?)ag+ (s Hast)dn
\OF =eostdy et penthe O
' Thjs*&n be put into the “Euclidean" form dst=dx?+dy* by
:tqki'ﬁg new parameters '
x=Fcos 3¢, y=nsini¥.

In comparing these two “developables,” the one hyper- -
bolic and the other elliptic, it is important to notice that,
whereas the horosphere can be mapped on the whole Euclidean
plane, the corresponding map of the Clifford surface covers
only a finite portion of the plane, namely a thombus of side 7
and angle . (See §7.5.) '

h
) 2



CHAPTER XIV

EUCLIDEAN MODELS

14.1. The meaning of “elliptic” and “hyperbolic.”  (Ta
ordinary Euclidean geometry, a central coniv may beselther
an ellipse or a hyperbola. For any central conic, t}}g:p’eiirs of
conjugate diameters belong to an involution {of lings through
the centre); but it is only the hyperbola that has$¢lf-conjugate
diameters (viz. its two asymptotes). Accordingly, any invo-
lution (and so, conveniently, any one-dimepsidnal projectivity)
is said to be hyperbolic if it has two self-carfetponding elements,
and elliptic if it has none., Analogou‘sly’; a polarity is said to be
hyperbolic or elliptic according asjt\does or does not contain
self-conjugate elements. Final[y::a non-Euclidean geometry
is said to be hyperbolic or elliptic according to the nature of
its absolute polarity. \y

" A more direct conneetion with ellipses and hyperbolas will
be seen in Fig, 14.2a.0%
N

14.2. Beltrami’s model. In the case of two-dimensional
hyperbolic geemetry, we are at liberty to draw the Ahsolute
as a circle/jthe Euclidean plane, provided we understand
that wi are then using two metrics simultaneously: the Euclid-
ean metric by which the circle is drawn, and the hyperbolic
mettie defined by 10.71 and 10.73. The poles and polars are

~LaXen with respect to the circle in the ordinary sense, as the
\.constructions involved are essentially projective. This model
for hyperbolic geometry is due to Beltrami (1835-1900).*

Any ordinary point of the hyperbolic plane may be iden-

tified with the centre of the circle.. If the two metrics are

*Beltrami 1], [2]; Bonola 2], pD. 164-175; Baldus {1], pp. 56-148.

252
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taken to agrec at that point, they will deviate more and more
as we recede from it, unfil at the circumference the distortion
is infinite. ) :

The hyperbolic metric can be expressed in terms of Car-
tesian cocrdinates x1, %2, by putting xo=1 (and 3, =1) in 10.81.
Alternatively, we can use that formula as it stands, by regard-),
ing xo, &1, %z as ‘‘homogeneous Cartesian coordinates,” mith"
%,=0 as the line at infinity. The corresponding re-imj@f:f'pre-
tation of 6.75 provides a similar model for elliptic géon:letry.
The point (x, 0) or (1, x, 0), at Euclidean distar;c.éqé from the»
origin, is at clliptic distance arc tan x,and at hyperbolic dis-
tance arg tanh x. This comparison of metxjes'establishes the
following model for one-dimensional non-Eue idean geometry.®

Q.

AN Fic. 14.2a

N\ We introduce the elliptic or hyperbolic metric into a line
AB of the Euclidean plane, by regarding AB as a tangent to an
ellipse or hyperbola, onto which its points are projected from
the centre Q, as in Fig. 14.2a. The non-Euclidean distance
AB is defined to be twice the area of the corresponding sector

*Klein (3], p. 173.
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" QA’B’. Thus the elliptic length of the whole line is finite,
being just the area of the ellipse; but the hyperboiic distance
AM, to a point on either asymptote, is infinite. For simplicity
we may take the ellipse to be a circle, and the fiyperbola to be
rectangular* with AB as the tangent at the vertex, C. Then,\
if %, x,, %3 are the Euclidean, elliptic, and hyperholic disfdnges -
CB, we have o\

x.s=arc tan x, Xp=arg '.'r.azgh‘gc:‘
as above. ON

ANy

Note that the twe kinds of trigonometrical funetions have to be called
cireulor and hyperbolic, the name “elliptic functiefg® being already used
in another connection, In fact, the latter { unc;i&hsfarise whesn we conaider
the arc-length of an ellipse (or hyperbola.},.ﬁ\nﬂ this is not proportional
to the area of the corresponding sector unjeSs the ellipse reduces toa circle,

 143. The differential of @istance. In Beltrami's model
‘we represented the point \qithféanonical coordinates {xy, %1, ¥12)
by the point with Cartegian: coordinates (x1/xo, %2/ %), Putting
xe=1, we have the e:gggressions

s J
arc cos & L TFEO Ty =

AV rzitad)/ (L Hyitys?)
ar éri“1/(3‘71“'311)2+(xn—y2)2+(x1y2—‘xzj'i}2
2\ (L+x2 4227 (132 +7)

and \"\

a)\" arg cosh . Ly xays =
oY _‘\/(1_"12_’322)‘\/(1 —y1* =)
\"x} “ | arg Sinh1/(x1—y1)3+(x2—yg)2—(xlyg—x2y1)2
(1—:*12—9522)(1 ""3712_3122)
for the elliptic and hyperbolic distances between points

(x1,%3), (¥1, ¥2). Thus the elliptic distance between (x1, ¥z}
and (x;+Axq, 22 +Ax,) is given by

*Hobson {i], p. 329,
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Ax?FAxEH(xhAxy —x1A%0)?
(LFa+a2) {1+ +Ax:)2+ (xa+-Ax5) |
and the differential of elliptic distance is given by
dxr? Fdxs? 4 (%adxy —20de)®

(14‘“3’:15q ‘Hﬂzz)2 - 4
(14x:2)duy? —2xy209dxsdn (1 +x,2)dxs? N\ \
At +ad) ~\*
Similarly* for hyperbolic distance we have "
dxq? +d_xam — (xzdx1—x1dxg)3 RN QO
A—mi—z 0
(1 —x2)dx? +2x1xado s (1 — 211 dxs?
(1—x2 2% _ ’
Analogous formulae for three-cli,fri'er{:s.ional space are readily
obtained. The hyperbolic abspiﬁté is then represented by a
sphere, and planes by sece}nt: planes. This modelf provides
the earliest satisfactoryproof that hyperbolic geometry is
consistent (so that Euclg’s Postulate V cannot possibly be
deduced from his ojcl}sr assumptions). ’

sin? As=

14.31. ds? =

14.32. ds?=

i4.4. Gnohjonic projection. In the elliptic case, theabove
results haye @ very simple interpretation in the geometry of a
bundle Q;l".”}'). In fact, e may consider (%o, #1, %2) as Car-
tesiatn:éoordinates in three dimensions, lines through the origin
refgsenting points of the elliptic plane. Then the result of
Sputting x;=1 is to take the section of the bundle by a plane.
In other words, if we represent the points of the elliptic
plane by pairs of antipodal points of the sphere

Py t=1,

*Beltrami [2}, pp. 287, 307.
{Beltrami [3],
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we can make a gnomontc projection® onto the plane x =1, with
the result that the antipodal points (x, v, ) and {-—x, —y, —2)
project into the single point (1, %5, ¥2), where

:C=:|:-——1-" :3’=:i: :‘fi:“'""'_"’! - O
V(122 4% (et
A
z=44 —:ZCS_— . N\ ©
,\/(1 +x12 Jr.xﬂ2) ) ‘:: N
Then 14.31 may be obtained by substitutioi :i;* the familiar

“formula

ds? =dx*+dy*1-dz?

%

The same analysis can be madgf@}nclude a derivation of
14.32 as well. For, we can chapge’the normalized canonical
coordinates of 13.62 into hon’log’eﬁeous canonical coordinates
by writing x,/~/(xe*=tx,’ =239 for x,, and then we can derive
Beltrami’s model by putjihg;xn =1. But in order to interpret
14.32 in terms of a busdle or gnomonic projection, we would
have to use a threé-dimensional space that is Minkowskian
instead of Euc@aﬁ. {See page 178.)

14.5. Development on surfaces of constant curvature.
Since thé\Biliptic plane can be developed (i.e. represented
withgg’g?distortion) on a sphere, it is natural to seek a corres-
ponding development of the hyperbolic plane on some kind
,C}f pseudo-sphere.” This should be a surface in Fuclidean
/$pace, such that all distances measured on the surface itself are
< \™ related like distances in the hyperbolic plane. In particular,
the ‘lines of the hyperbolic plane should be represented by.
geodesics (i.e. shortest paths, like great circles on a sphere).
The point-to-point homogeneity of the hyperbolic plane re-
*Klein [3], p. 294,

~ {Minding 2], p. 324. For a very enjoyable account of this aspect
of non-Euclidean geometry, see Lieber [1].
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quires constant specific curvature K for the surface. (Cf. §1.6.)
Gauss proved that, for a triangle ABC formed by geodesic
arcs on a surface of area S, the total curvaiure is

JJKdS=A +B-+C—m.

In the case where K is constant, this means that the area of-
the geodesic triangle is (4 +B+C —m)/K, which agrees #ith
13.32 and 13.44 when the unit of length is generaliged}as in
§10.9. Thus a pseudo-sphere is a surface of consfi{n{f megative
curvature. ) \/

Such surfaces were studied by Minding (1 #5-1885).* The
simplest example is the horn-shaped tracfroid, a surface of
revolution for which cylindrical coordina.te}r and 2 are expres-
sible in terms of a parameter #, thus: ») '

r=sech f, z=,£:§:fé.nh L

This model for hyperbo]ic';",’geometry is inferior to the
spherical model for elliptig: geometry in two respects. First,
although the maximurpia}sd minimum normal curvatures at a
point on the surfacefiave the constant product K =—1, they
vary from one poipt‘ to another, whereas every normal section of
the unit spherélfds curvature 1. Second, the tractroid does not
represent theswhele hyperbolic plane, but only a restricted
region, 1 fnely a harocyclic sector {Fig. 13.4a). For, the meri-
dians Q?%we tractroid, being geodesics which approach one
angtl;éf asymptotically, represent parallel lines; and the circles
ofthogonal to them represent arcs of concentric horocycles,
ofe of which, representing the “rim” (¢=0) of the tractroid,
is of length 2r. The horocyclic sector is "“wrapped around”
the tractroid so that its two bounding diameters coincide with

*Minding {1], pp. 379-380. For good pictures of these surfaces, see

Klein {3], p. 286. For an easy proof that the tractroid has constant curva-
ture, see Sommervitle [2], pp. 168-170.

17

N

P.Y



258 EvcLibEAN MODELS

one merdian. We easily verify that the total area of the
surface is 2w, in agreement with 13.74,

Beltrami suspected, and it is now known,* that there is no
smooth surface in ordinary space which provides an undis;
torted representation for the whole hyperbolic piane.

RE

14.6. Klein’s conformal model of the ellipiic plasies The
various ways of representing a sphere on the Fug:udean plane
have a practical application in mapping the surface of the .
" Earth, and it is coavenient to use the termm\@mgy suggested
by that application. Thus stereographic pmjecnoﬁt may be
described geographically as the projestien from the “north
pole” onto the “equatorial piane’}foi‘, in some treatments,
onto the tangent plane at the {$puth pole,” which gives a
similar resuit). Using Cartesié,n ‘coordinates, we project the
general point (xq, 21, Xo) . o‘f:the unit sphere xf-+x2+x=
from the point (1, 0, 0} onto the plane x;=0, obtaining the
point (0, 21, we) for {.(hlch

LG NI 1
\\ s oW _ By _ ,
_ \ X1 Xo 1 — X0
so that ;™
N
a Ha
14.6L. ._ )\ 2t —1 21ty 2ua

T xy=————
\" i ulg gt 1 =B w2l 41 : 2,2+t +1
These equations take the slightly simpler form

. \m}“ 14.62. __uu 1 wtu . U

Xg= xX1= X =
U+ 1’ ny -+ 1’ un-+1
in terms of the complex number % =#,+44s. Conversely, we
have here a representation of complex numbers by points ofa
sphere, known as the Neumann sphere. The geodesic dis-
*Liitkemeyer [LL
tNeumann [1], p. 52; Klein {3], p. 205.
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tance & between two such points (x) and (y), corresponding to
complex nurabers # and v, is given by '
cos § =xgyotx1y1taaye
(a1 =D+t w)+) — (-0 e—v)
{un+1)(wo +1) ' R
{
(4D Ea ) _ @t 4Ty O
At e 1) e e+ )00
This is the cross ratio* of the four complek ‘“numbers
u, v, —¢l, —u~. Hence, if A, B, B', A’are the points in the
u-plane which represent these complex nug{s\e,rs, we have
fu+771 . Juks)| _AB -BA
lutut|CNpdvt|  AA-BE '
We thus have a simple expressionffi’)r the “spherical distance
AB" in terms of the Enclidean distances between A, B, and
their “‘negative inverse” poil‘l‘ts’ A B, (I u=reé’, then
—w =180t Thus Aland A’ are at reciprocal distances
from the origin in oppoqsife directions.)
By 14.61, every li\éﬁ’i’ relation among ¥o, X1, ¥2 is equivalent
1o a linear relatjpﬁ.among sl us?, #1, #s. In other words,
every circle or,l‘the"sphere projects into a circle {or line) in the
plane. In .pafi:icular, a “meridian” (lying in the plane
X1x1+§3§c}’-’—-0, say) projects into a line through the origin,
but af\‘other great circle (such as that in the plane
xuji?\~X1x1+ Xwx,=0) projects into a circle of the form
mt“ ﬂ12+ﬂ22+2X1u1+2X2u3—1=0, B
\Dr which the power of the origin is —1. Sucha circle meets
the “equator” ul-+tu?—1=0 in two diametrically opposite
points (of the latter).f :
This representation of spherical geometry on the Euclidean

g0 that

cos® §6

14.63. cos? 35= |cos? 38| =

*Cf. Somnterville [2], pp. 182-185.
1Carslaw {1}, pp. 171-174,
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plane is due to Klein. “Lines” of the spherical geometry,
being great circles of the sphere, are represented by circles and
iines which meet a fixed circle at the ends of a diameter. To
derive the corresponding representation for ellipfic geometry,
we merely have to identify each pair of “negative inverde
points, or equally well to restrict consideration to the inside
of the fixed circle, identifying each pair of diametri—;:al{y\bppo-
site poiats of that circle. ' G\

Since circles are represented by circles, thefa’f)"ove trans-
formation (from the spherical or elliptic planelt&the Euclidean
plane) is conformal,* i.e., angles are represented without any
distortion. For distances, on the othQ; hand, we have from
14.62 the formula L

dpdu _ 4(dudtdus)
Nwu+1y (wltud+1)°

14.64. dsf=dx2+dxtdxt=

<N
&\

14.7. Klein’s confofmal model of the hyperbolic plane.
To obtain a represéntation of two-dimensional hyperbolic
geometry on a sphere in Euclidean space, we take Beltrami’s
model in the e§itetorial plane, with the equator for Absolute,
and project otthogonally.t Then every ordinary point of the
hyperboliciplane is represented by two points on the sphere,
one in gle’horthern hemisphere and one in the southern, while
the équiator represents points at infinity. Lines of the hypet-
bolic plane are represented by circles orthogonal to the

..fé’quator. "Any circle on the sphere which intcrsects the
) equator projects orthogonallyinto an ellipse which has double

contact with the equator, and so represents an equidistant

"*The -preservation of circles is a sufficient coudition for conformality.
See Sommerville [2], p. 237. '

tFor beautiful drawings_of this construction, sce Klein (3], p. 296.
Note that we are using the equatorial plane instead of the tangent plane
at the south pole. The advantage is that points at infinity now have the
same representatives in both models.
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curve. ‘We shall not be surprised, therefore, to find that this
representation on the sphere is conformal. Finally, we go
back to the equatorial plane by stereographic projection from
the north {or south) pole. The result is a representation of
the hyperbolic plane on the Euclidean plane, lines being repre-

sented by circles which cut a fixed circle orthogonally, i.e. by
£ o

circles for which the centre of the fixed circle has power 1.

Since two such circles meet once inside and once outside
the fixed circle, each point of the hyperbolic planc id\repre-
sented by two peints which are inverses with respéct’ to this
cirele, or equally well by one of these alone, say that which lies
inside the circle. N

A flat pencil is represented by a systp'q%‘of coaxal circles
{orthogonal to the fixed circle). In the case of a préper pencil,
these will of course be intersecting circles. For a pencil of
parallels, they will touch one anophé? at a point on the fixed
circle, their common tangent beii‘rg a diameter. For a pencil
of ultra-parallels, they will be Hon-intersecting circles, namely
the system of circles orthogonal to twogiven intersecting circles.
In each case, the “cémpiémentary” system of coaxal circles,
which arc the orthbgonal trajectories of the system’ just de-
scribed, will repiésent the system of concentric circles (or
horocycles, a;n\:ef:midistant curves) whose diameters are the
lines of hﬁ%ivw flat pencil. In particular, a horocycle is

. represenied by a circle touching the fixed circle.

We must remember that the points outside the fixed circle
mierely represent the ordinary points over again. Ultra-
Sﬁiﬁnite points are not represented by points at all (unless we
extend the Euclidean plane so as to include complex points}.
If we restrict consideration to the inside of the fixed circle, we
must say that an equidistant curve is represented by a figure
consisting of two arcs which cut the fixed circle at supple-
mentary angles. This shows clearly that an equidistant curve

Q.
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may meet a proper circle (ora horocycle, or another equidistant
curve) in as many as four points.

We have seen that lines are represented by circular arcs
joining pairs of points on the fixed circle. 1o return o
Beltrami's model, we merely have to replace these args by

their chords. )
Analytically, if xo=0 is the equatonal plane of 1he sphere
14.71. ’ xnz ‘l‘.fi:]_2 ‘|“x2 N \ ‘.

the point (0, x1, x2) of Beltrami’s model pm}é@s orthogonally
into the two points (V1 —x2—x22, x1, Tap & the sphere.  If
the point (— Vi—x -2l &1, X2) in t’hé’southem hemisphere
projects stereographically into (D,y,l\, Hg), we have

214 :w' 2t
= ——— g\ X2 T
1+u12+ug 142242
with 2 +ug? <1. In tc,rms of complex numbess x =x1+ixs

and #=u,+71s, thes& relhtions become

. m\ o6 =2u/(1+un).
By 1081, the h&perbohc distance & betwcen points & and ¥
{in Beltram1 symodel) or % and v (in the conformal model) is
given by </

1—Hxy+yx) _a Fun) (14w ) —2{uw —{-w)

sh b= = -
SO V= Vi) (T— ) (1 —o0)
~thnce
. "\ - - "™
\"'\; "/ CDShz (1 "”'u‘U)(]_ W) (u —E_I) (%‘ __if-l) .
2 v (1-un)(l—ve) C (a—w (e —v )
This cross ratio can again be expressed as
) AB' - BA'
AA’ - BB

(cf. 14.63), where A and B are the points in the u-planc which
represent the complex numbers # and v; only now A’ and B’
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(representing %t and 771) are their ordinary inverses with
respect to the circle zu=1.

14.8. Poincaré’s model of the hyperbolic plane. There
is clearly a very close analogy between the models described
in §14.6 and §14.7. Itis instructive to place corresponding),
resuits side by side; e.g., Fig. 14.84 illustrates the fact that'the’

angle-sum of a triangle is greater than r in elliptic ggq@é’try,
less thar = in hyperbolic. e \

FiG. 14834

Since circlesvate’represented by circlés, and (consequently)
angles are pres]a}ved, it is clear that reflections are represented
by inversigsts) Hence any inversion, applied once for all to the
whole ai&tein, will produce another conformal representation.

A ’;;ﬁistinction between the elliptic and hyperbolic cases
j{riséfs’ here, since the property of cutting a circle orthogonally
isimaintained by inversion, whereas the property of cutting a
Grcle diametrally is not. Thus, in the hyperbolic case, a suit-
able inversion will replace the “fixed circle’ by a straight line,
and we have Poincaré’s representation of the hyperbolic plane
on a Euclidean half-plane, lines being represented by semi-
circles based on the bounding line.* When this line is taken

*Poincaré {1}, p. 8.
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to be #:=0, or u=u, the inversion in a circle orthogonal to it
is expressible in the form

#' = (u+b)/(cu—1),
where b and ¢ are real.

Sirice a semicircle is determined by its diamster, we have
incidentally represented the lines in the hyperboii: plage by
pairs of points on a line, as at the end of §10.3. y

Klein made the interesting observation thas“Péincaré’s

“model can be derived frem Beltrami's by prpiéﬂ}air:n without
inversion. His procedure* is equivalent\to” the following.
Given Beltrami’s model in the plane xo=0¢ we project ortho-
gonally onto the sphere 14.71, and thedstereographically from
the point (0, 0, 1) onto the plane #3=*0 (perpendicular to the
equatorial plane). Thus the equator projects into the x1-axis,
and the lines of the hyperbo]ig:pilane are represented by circles
orthogonal to this line. &%~

14.9. Conforma}ml}:odels of non-Euclidean space. Apart

“from the use of ﬁqp’ilex numbers, which was convenient but
not essential, al\Nthe ideas of §§14.6-14.8 can readily be ex-
tended. to jspzi'ce" of three or more dimensions. Insiead of a
sphere westnust use a hyper-sphere, but that hardly demands
an aonky nowadays. _

.The planes of three-dimensional ‘‘spherical space’ are
.rgili"esented by the planes and spheres that meet a fixed sphere

“\'in great circles (of the latter). The spherical distance AB is

\ still expressible in terms of ‘“negative inverse” peints A’ and
B, as in 14.63. Elliptic space can then be derived by iden-
tifying pairs of negative inverse points, or by restricting con-
sideration to the inside of the fixed sphere and identifying
pairs of antipodal points of that sphere.

*Klein [3], p. 300. :
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So also, the planes of hyperbolic space are represented by
the planes and spheres that meet a fixed sphere or plane®

orthogonally. The hyperbolic distance § between points A

and B is still given by

.8 AB’ - BA
cosh*- = ———, A
2 AA’ - BB ¢\,

A\
where A i3 the inverse of A with respect to the fixed sphere,

or the reflceted image of A in the fixed plane. R

The n-dimensional-analogue of 14.64, namely { ¢
4(du?+dul+. . Hdu?) 2
(it ugt . . At P
is Riemann's famous formulat 161 (withd, =24, and K=1).
This, and the corresponding hyperbolityformula
4{du? +du? 238+ dus?)
(1“" ﬂlz-“i‘ég&:'}“. N ._u“2)2 !
may be elucidated as follows.™ Suppose we explored Euclidean
space with the aid of a snfall measuring-rod which automatic-
ally stretched or shr, r{lt.ih the ratio (14+2) : 1, where r is the
Euclidean distance frem a certain fixed point O. According
to such measurcmedts, the space would appear to be elliptic
or hyperbolic/reéspectively. In particular, the apparent dis-

tance from,@:!\(if a point whose Euclidean distance is %, would
be & '

ds® =

ds?=

O 5 dr

AN -[ =arc tan x or arg tanh x.

~O 01r?

“These cxpressions are the same as those of §14.2, save that the
‘unit of non-Euclidean distance is now twice as large as before
(on account of the 4 that we tacitly dropped from the above
formulae for ds%). This change of unit is, of course, more

b“‘Poincaré [2). This short article is a particulariy fine exposition of the
main phases of non-Euclidean geometry.
tRiemann [1], p. 17.

Q.
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significant than a Euclidean change of scale; in fact, we have
seen that lines in Beltrami's model become circles in Klein's. -
In order to describe the former model in terms of exploration
with a measuring-rod, we would have to assume different
ratios of stretching or shrinking for different directions gt thie
same point.* In other words, Beltrami's model is not co ;r}ﬁal

‘ o\
*Cayley 4], p. 10; M®Clintock {1], p. 26. Ol
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Abscissa, 74, 104, 107, 206

Absolute, 126, 153-157, 195, 199,
207, 224, 252; geometry, 11, 17,
26, 179-185; involution, 96, 104,
198; points, 106; polarity, 95, 110,
128, 157, 181, 185, 193, 211, 212,
224, 252

Acute-angle hypothesis, 5

Acute segment, 103

Addition of poiuts, 71

Affine geometry, 18, 24, 31, 35, 77,
95, 159, 178

Altitudes of a triangle, 220, 223,
231, 233

Analytical geometry, 71-04, 121.
127, 132, 148-153, 156, 209-212,
224.331, 253-265

Angle, descriptive, 163, 180; metris ,
cal, 8, 14, 107, 112, 127, 129, 132 ¥

207-211, 225, 250; of parailihsm
9, 189, 208, 230 ,
Angle-bisector, 200, 220\\
Angle-sum of 5 tr:ang‘lc, 2,7, 191,
243, 263
APOLLONIUS of Perga 48
Arc, 249 o
Area, 3, @1 253; of a circle, &,
250; of thé elliptic plane, 242, 250;
of @shorecyelic sector, 243, 250,
M?.-5‘8 ‘of a triangle, 7, 9, 243-247,

\257

real coordinates, 237
ARISTARUS, 48
Associated reguli, 63, 69
Associative law, 72
Astral geometry, 7
Astronomy, 9

1%

wyequidistant  curve,
D

Asymptotic approach of parallel
tines, 6, 210, 257

Axial pencil, 21; see also Pencil,
generalized N

Axial plane of a sphere, 218 ¢\

Axiom, 1fi; Pasch’s, 20 (2. 115} 162
(8.317); Playfair's, 3, 136

Axioms of congruencem 1‘80 ‘of con-
tinuity, 23, 36, }“ L¥74, 104, of
descriptive geometry, 161; of
incidence, 2030t parallelism, 1886,
187, 197y \b{ plane hyperbolic
geomet;'x, %99; of plane projective
geomét,ry. 28; of separation, 22,
174\,

Adisi of a circle, 116, 213; of an

213; of a

" pencil of planes, 21; of a pro-
jectivity, 60; of a rotaticn, 130;
of a translation, 136, 202

Baxer, H. F,, 18, 28, 166.171, 232
233
BavLpus, Richard, 204, 213, 252
BrLLAvVITIS, Giusto, 59
BeLtRsm:, Eugenio, 252, 255-258,
260, 262, 264
Berxavs, Paul, 24
Between, 18, 23, 159
Bibliography, 267-272
Bilinear relation, 75
Binary expansion, 101
Birectangle, isosceles,
Bisection, 100, 200
BoLyai Farkas, 2, 10
Bovvar Janes, 10, 17, 157, 179, 204,
215, 220, 250

4, 190, 241

273
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Bolyai's parallel consiruction, 204

Bowova, Roberto, 3, 134, 171, 199,
210, 211, 213, 252

BooLk, George, 122

BriancHox, C, J., 59, 62, 200

Bundle (of lines and planes), 14, 21;
gencralized, 166-171, 184, 197,
213, 218; of parallels, 24, 177, 184,
187, 195

Bundles, correlated, 219

Canenical form for a conic, 87, 209;

+

for an involution, 76; for a
polarity, 86, 01, 249; for a
quadric, 92

CarsLaw, H. S, 176, 188, 189, 206,
210, 215, 241, 244, 249, 250, 259,
267

256, 258-260, 262 ~."
Categorical, 160, 186, 196,2°
CavLEy, Arthur, 13, 109\122 125,

126, 149, 157, 18%%‘96 226, 266

2

Central projection,

Centre of 2 bundle) 21; of a circle,
1, 213; ofa(\ﬁat) pencil, 20; of a
pro;ectW\v, 60, 203; of a rota-
tion, 441202

Centxégd 31, 221, 230, 236, 239

(.HASLES Michel, 53, 106, 217

(;m:le,l 2, 14, 115-117, 122, 181,
213-218, 22)-292 295 231, 237,
252, 259-264; see also Arc, Area,
(.u'cumft,rcnce Coaxal

Circular ppints at infinity, 106

Circum-centres, 221, 223, 230

Circumference, 8, 11, 250

Circum-radius R, 230, 235, 239

Circumscribed circles {(or Circum-

INDEX

3 261 ;
Carran, Elie, 89, 94, 137 N
Cartesmn coordinates, 24, 211, 25\'3.—"

[Bolvai .

circles), 221, 230, 237

Class, 16

CrirForn, W. K., 128, 270

Clifford  parallel, 134, 151, 154;
parallelogram, 142; surface, 148,
145, 148, 133, 155, 251; trans»
lation, 135.142, 149, 155 ¢

Coaxal circles, 26l; Chﬁor& suy-
faces, 143 >

Coaxial planes, 21 £™4

Collinear, 20, 897

Collineations39,60-63, 82, 80

Colunar triaigiés, 220, 233

Commonparallel, 205; perpendicu-
lar, 133, 147, 158, 191, 204

Comiplex, lingar, 69, 92

Comblex geometry, Euclidean, 106,

p non-Euclidean, 207, 212,
217, projective, 94, 106, 126, 153,
207

Complex number, 94, 107, 238, 262

Composition of rotations, 118-120,
125

Cone, quadric, 26, 62, 178; right
circular, 14, 48

Contormal mapping, 258-263

Congruence, linear, 92, 151, 155

Congrueace (relation}, 18, 95, 100,
103, 106, 115, 132, 179, 201, 241

Congruent transformation, 95, 113,
126, 130-132, 139-141, 150, 154,
179, 201-203, 245: see also Direct,
Opposite

Conic, 26, 48, 56-62, 87, 117, 126,
196, 199, 215

Conjugate lines, 32, 63, 86, 252;
planes, 65; points, 52, 65, 86, 93,
96, 106; quaternions, 123

Consistency of axioms, 4, 10, 23, 97,
197, 255
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Elliptic}

Construction for a common parallel,
205; for a common perpendicular,
191; for parallels to a given line,
204

Contact, see Double, Quadruple,
Ring, Third order

Continuity, 23, 74, 101, 162, 174,
187, 104, 201

Convex region, 159, 162

CooLInGE, J. L., 117, 134, 151, 229,
248

Coordinates, see Areal, Cartesian,
Homogeneous, Nor-homogeneous,
Pliicker, Study, Trilinear

Coordinate transformation, 76, 83

Coplanar, 20

Correlation, 51, 65, 85, 91, 219

Correspondence, 16, 52, 215; see
also Direct, Ordered

Cosh, 206

Coxnter, H. S. M., 9,235

CrreMONA, Luigi, 59 A~
Cross (angle), 112 \’
Cross ratio, 76, 84, 90,105, 107,
120, 126-132, 259, \
Curvature, Gaussmn (or Specific);
12, 144, 211, 25( of space, 11, 212
Curve, 248 . ¢
Cycle, 213 {
Cyclic o\{f{er’on a line, 18

DEDEKIND Richard, 19, 74,101, 162
Defect, angular, 6, 246
Degenerate involution, T1; polarity,
186, 212
DErN, Max, 166-173, 179, 187, 194
DE 1A HIgE, Philippe, 29
DEsarGUES, Girard, 14, 28, 172
Descriptive geometry, 159-178

i8a

INDEX

£/8

2i5

DE SiTTER, Willem, 209

Developable surfaces, 144, 220, 251

Diagonal triangle, 27, 56

Diameter, 213, 252

Dictionary, 14, 24-26, 97

Differential geometry, 12, 15, 247-
251, 255-257, 260, 265 N

Dihedral angle, 129, 163 . L\

Dimensions, 21

Direct collineation, €4; ,coqg'ruent
transformation, 132 140, 141,
146, 154, 202; c&{mspondence,
36; projectivity; 43

Directed angle,\12

Directrices gha-congruence, 83, 155

Dlstance,\225, see aiso Elliptic,
Hyperbelic

Distribative law, 72

N

Donkin, W. F., 109, 119, 122, 136-

5 138
*Double contact, 127, 217, 260;
perspectivity, 34; point, 36;

rotation, 131, 141, 150
Doubly-asymptotic triangle, 188,
210, 245
Doubly oriented line, 34, 137
Duality, 19, 26, 51, 62, 165
Dummy suffix convention, 83
Duplication of the cube, 48

Elements of Euciid, 1, 115, 181-184,
188, 191

Ellipse, 18, 48, 252-254

Elliptic (linear) congruence, 93,
151, 155

Elliptic distance, 14, 103, 117, 120-
122, 126, 132, 254-255; geometry,
4, 13-15, 95- 156, 207, 220-223,
242, 252.255, 260, 264-266; n-
volution, 45-47, 06, 104, 252;
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line, 55, 96-108, 112, 253; point,
55; polarity, 34, 66, 86, 96, 110,
157, 252; projectivity, 43, 75, 208;
trigonometry, 232-238

EngEL, Friedrich, 6

ExriQues, Federigo, 29, 36-45, 54-
56, 61-63, 101

Equidistant curve, 213-217, 222,
227, 260; surface, 218

Equivalent regions, 241

Etlanger Programm, 17, 115

Escribed circles (o7 Excircles), 221,
231, 239

Eucuip, 1, 18, 48, 175, 181, 197;
see alse Elements, Postulates

Euclidean geometry, 6, 9, 17, 98,
99, 106, 117, 144, 178, 186-187,
197, 202, 220, 25i-266; as a
limiting case, 8, 212, 235 237
242 .;.

EULER, Leonhard, 109 N\

Factor of proportlona.hty \82

Field, 94, 171

Finite but unboundé‘ space, 11

Fixed points of a,sollineation, 61

Flat pencil (cflifies), 6, 20, 158, 175;
generalized ™99, 213, 261

Foroer/H G, 112, 162, 163, 177-
182o G, 187, 195

Forrns, primitive, 21

.F{)ur dimensional space, 13, 26

sFractwnaI linear transformation, 75

’Fundamental Theorem of Projec-
tive Geometry, 42, 76

Gauss, C. F,, 2, 7, 8, 144, 157, 175,
176, 190, 215, 234, 247, 257

Genealogy of geometries, 19

Generators of a quadric, 62, 68, 94;

InpEX

[Eltiptic

of the Absolute, 153-156
Geodesics, 144, 256-257
Glide-reflection, 201-203
Gromonic projection, 258

GorrsaT, Edouard, 150 "\
Group, 16, 103, 115, 138, 11, 145

2y
H(AB, CD), 28 O

Half-plane, 163, 263 "

Half-space, 163, 178

Havsreo, G, B,AQGY

Hamiiton, SicW. R, 109, 119, 122

Harmonic cbifjugate, 28, 39, 42, 45,
76, 8U\07; homology, 50, 64,
5, 8&, 116 208, 228; set of lines,
30,\51; set of points, 28, 40, 51

HEPF'I’ER Lothar, 18, 84, 90

A HESSE L. 0., 53, 223

H:SSEVBERG Gerhard, 71

Hezxagon, 59, 201

Hiveert, David, 24, 179, 180, 191,
194, 195, 205, 241

HirrocraTES of Chios, 1, 48

Hirg, Philippe de Ia, 29

History, 1-15, 48, 226

Homzon, E, W., 254

HorGats, T. F,, 39

Homogeneous coordinates, 25, 76-
94, 121, 124-127, 132, 148.153,
156, 209-212, 224 233, 236, 240,
253; space, 15, 266

Homology, see Harmonic

Horocyele, 9, 213, 214, 217-222,
227, 239, 244, 250, 257

Horosphere, 7, 9, 218-220, 251

Hyperbola, 18, 48, 252.254

Hyperbolic cosine, 208; distance,
157, 201, 206-211, 254-255; func-
tions, 206, 254; geometry, 4-11,



Lune]

157, 178, 187-210, 213-223, 243-
247, 252-258, 2060-260; involution,
45, 76, 252; line, 55, 201, 253;
point, 55; polarity, 54, 56, 86,
110, 157, 252; projectivity, 43,
75, 203; trigonometry, 220, 237-
240
Hypercycle, see Equidistant curve
Hyperosculation, 218
Hyper-space, 12, 14, 26, 94, 160, 265
Hyper-sphere, 12, 264

Ideal line, 171, 185, 199, 209; plane,
173, 185; point, 158, 171-178,
185, 199, 209; see aiso line at
Infinity, Ultra-infinite

Imaginary geometry, 10, 158

Improper bundle, 166, 174, 184

In-centre, 200, 221, 231, 236 n
Incidence, 18, 20, 80, 171, 263 ‘ x

3

Infinitesimal, 9, 212, 235, 238

Infinity, see Point, Line, Plafie

In-radius 7, 221, 231, 235237, 239

Inseribed circle (or I\B{rcie), 221,
231

Interior of a comidy. 56, 87: of an
interval, 23y 36-38 41

Intermedlacy}\l‘ag

Intersectioh, Yondition for lines, 89,
1525

Interval 23, 36-38, 41, 161

].m}aria.nt 17, T7; s¢e aise Fixed

\[rverse correspondence, 17

\ Inversion, 259, 263

Involution, 44, 61, 76, 203, 262; see
also Absolute, Degenerate, Ellip-
tic, Hyperbolic

Involutory collineation, 50

Isosceles birectangle, 5, 190, 241

Isotropic space, 15

INDEX

2n
Jomxson, R. A, 112, 221

K, see Caurvature

KEFLER {or Keppler), Johann, 14

Kiemv, Felix, 13, 14, 17, 33, 85,
107, 115, 126, 139-144, 153- 16&,
182, 209-212, 215, 220, 224- 226»
243, 248, 252-264 C

Klein's conformal modg]:'2§8-263.
266; projective rr{oc:?el, 157

KRONECKER, Legpeld, g3

LscuergE, Edmond, 107
LAMEER 'j;. ., 8

Leftsgénérator, 155; parallel, 142,
146, 2155; translation, 139, 148,

o9, 155
\LEGENDRE, A&, M., 2, 194

Length, &, 103, 106, 157, 180, 248
LigseR, H. G.and L. R,, 256
Liesmany, Heiorich, 245
Light-ray, 4

Line, 1, 4, 14, 20, 24, 161; sec also

Doubly oriented, Elliptic, Hyper-
belic, Ideal, Projective; at infin-
ity, 24, 31, 106, 117, 178, 188,
192, 195, 200, 209, 217, 253; co-
ordinates, see Tangential, Plticker;
element, 12, 248, 255, 260, 265

Linear complex, 69, 92: congruence,
92, 151, 155; transformation, 75,
82, 90, 124

LOBATSCREWSEY, N, I, 2, 8.10, 158,
175, 176, 182, 201, 206-208, 218,
220, 238, 247

Logarithmic-spherical geometry, 8

LupLaM, William, 3

Lune, 242

Q"



278 INDEX [McClelland

McCLELLAND, W. J., 220, 223, 232. Obtuse-angle hypothesis, 5 11

237 One-dimensional geometry, see El-
McCriNTock, Emory, 266 liptic line, Hyperbolic line, Pro-
MacLaURIN, Colin, 48 jective line
Matrix of a linear transformation, One-sided, 33 "\

83 Opposite congruent transf ormatien,
Measuring-rod, variable, 265 132, 150, 154, 202; see alsa Direct
Medians, 221 Ordered correspondencey 3540
MENAECHMUS, 48 Order on a conic, 59; an.¥ line, 18,
Metric, see Distance, Elliptic, Hy- 73, 159; in a penet], 154

perbolic Ordinary, see'Idea];"

Mid-point, 100, 180 Orientability;(32:64, 108, 113, 120
MiLng, W. P, 237 Orthocentrey 823, 231, 236, 239
Mrinping, Ferdinand, 256-257 Orthogo, JProjection, 260, 264;
Mingowskl, Hermann, 19 transfépination, 123
Minkowskian geometry, 178, 256 (}va.l'l'-qxadric, 68, 92, 157, 185, 219

Model, 18, 23, 97, 157, 203, 253; OwaNs, F. W., 199
se¢ oiso Beltrami, Conformal, \ +
Poincaré o ‘Pangeometry, 10

Mspvs, A.F, 83, 118 ON Parahols, 18, 48

MonrmaNy, Hans, 204, 234 0 Parabolic geometry, 197, 212; pro-

Moorg, R. L., 179, 186, 187 .

jectivity, 43, 75, 203

Mowrzis, W, S, 145 o\ Paral

C e P arallax, 9
Multiplication of pogQ,'ﬁ

R

Parallel displacement, 201-203, 214;
line and plane, 177; lines, 2, 8,
17, 134, 138, 141-144, 151, 154,
175-178; planes, 185; rays, 176

Parallelism, see Angle, Axioms, _

3 : Symmetry, Transitivity
Net ofi‘ationality, 73 Paratactic, 1;34

NEUMSNN, Carl, 258 PascaL, Blaise, 48, 59

Hoa-Euclidean geometry, 4, 7, 252 PascH, Moritz, 159, 166-173, 179,
#Non-homogeneous coordinates, 12, 186

/122, 144, 145, 248, 251 Pencil, axial, 21; flat, 6, 20, 58, 158,

NAPIER, Johuy, 234

n-dimensionabgeommetry, 12, 14, o4,
160, 244, 265

Non-Legendrian geometry, 194 175, 199, 213; peneralized (axial),
Norm (of a quaternion), 123 166, 169-171, 184, 193, 213: of
Normalized coordinates, 122, 248 parallels, 24, 185, 187, 195, 199
Null polarity, 52, 89, 70, 92 Pentagon, complete, 27, 64, 70:
Number, see Complex, Rational, simple, 234, 235

Real Pentagramma mirificum, 234



Reciprocal]

Pentahedron, complete, 27, 64

Permutable correspondences, 17,
115; involutions, 46, 203; quater-
nions, 123; reflections, 99, 119;
rotations, 120; translations, 99,
139

Perpendicular line and plane, 1832;
lines, 18, 110, 121, 133, 147, 157,
181, 224; planes, 128, 182; points,
110, 121, 128

Perspectivity, 21, 22, 39, 40, 48;
double, 34

Physics, 4, 24, 209

PIckeN, D. K., 112

PIEP:I, Mario, 18

Plane, 20, 162; see alss Ideal:
at infinity, 15, 25, 178, 186, 194,
212

PrLavFaIr, Jobn, 3

PLUCEER, Julius, 87, 88, 150, 153

PoiNcARE, Henri, 263-266

Point, 1, 4, 14, 20, 24, 161{;»5’}12 alse
Double, Ideal; at inK‘ty; 6, 14,
19, 77, 106, 158, 177,:186, 192,
195-206, 239; of.centact, 56

Polarity in a /bindle, 62; in a
plane, 52, 85,"187; in space, 65,
70, 9L; GeeValso Absolute, De-
generate) Elliptic, Hyperbolic,
Nulf} Tritinear

Polar tine, 52, 85, 91, 128, 198, 227;

\”\,p'lane, 65; triangle, 53, 119, 223,

231, 233, 236

Pole, 52, 65, 117

PonNceLET, J. V., 18, 31, 106

Postponius, 2

Postulates of Euclid, 1, 11, 13, 181,
197, 255

Power of a point, 259, 261

INDEX

279

Prestox, Thomas, 220, 223, 232-
237 .
Primitive forms, 21
ProcLus, 2
Product of correspondences, 16 of
points, 72; of rotations, 118, 141
Projection, 21; see also Gnomouie,.}
Orthogonal, Stereographic ("}
Projective geometry, 14; ‘35‘ s
Complex, Real w\ 3
Projective line, 28, $31.33, 35-47,
7177 Q)
Projectivities, one:dimensional, 40-
47, 58-61,/83,-126, 201-203; two-
dimensioi&él; 49-52
PrdsegR, Reyes y, 165
Pseudo-sphere, 256
RirHAGORAS, 1
% Quadrangle, complete, 27, 29, 49,
51, 53; simple, 5, 6, 190, 194, 241
Quadrangular set, 44, 72
Quadratic form, 86, 124
Quadric, 68, 94, 207; see aiso Cone,
Oval, Ruled
Quadrilateral, complete, 27, 49, 51
Quadruple contact, 155
Quaternions, 122-126, 148-152

R, r, see Circum-radius, In-radiua

Radian measure,., 106, 112

Range, 20, 6%

Ratio, T7; see olso Cross ratio

Rationality, net of, 73

Rational number, 72, 171

Ray, 161

Real number, 25, 73, 94; projective
geometry, 15, 19.84, 203

Reciprocal pencils of planes, 193

Q"
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Rectangular Clifford surface, 134,
133; hyperbola, 254

Reflection, 3, 14, 97, 104, 108, 111,
129, 153, 201-203, 213, 263

Regions, 84, 159, 162, 241; eight
determined by a tetrahedron,
35, 66; four determined by a
triangle, 34, 55, 81, 220; seven
determined by a quadrilateral,
66

Regulus, 62,
Associated

Relativity, 11, 19

Representation of lines by point-
pairs, 146-148, 203; of rotations
by points, 136-14%

RevE, Theodor, 219

94, 134; see also

~

Reves v PRC)RPER Ventura, 165':’:.'

Ricauonn, H. W., ¢ ,jf.

RIEMANN, Bernhard, 11, 167, 265

Right angle, 1, 13, 113£»oIRI

Right-angled trlang\\l 17,231, 234,
238

Right segmenty93; 96; translatlon,
ete., see Lef‘t‘

Ring contébt 155

Ros A\A 19
Rq;éon, G. de B, 22, 31, 50, 59,

471,78, 87, 96, 154, 150, 165-173

“RoBson, Alan, 28
"RoorIiGUEs, Olinde, 109

Rotation, 14, 111-114, 118-120, 123-
128, 130, 136-150, 214; see aiso
Double

Rotatory reflection, 131

Ruled quadric, 68, 9294, 134, 144,
153

RusseLL, Bertrand, 18, 23, 34, 160

InpEx

" Saccrer, Gerolamo, 5

[Rectangular

S(ABC), 32

. 11, 190, 210
ScHILLING, Friedrich, 209, 245
Scarirel, Ludwig, 9, 12, 247
Scroutg, P, H., 04

Scrur, Friedrich, 166-173 N
SCcHWEIRART, F. K., 7 ) \' N
Secant, 56, 68, 87 _ \
Sector, 249, 250 N
Segment, 23, 161/
Self-duality, 48,117
Self-perpeddicitlar, 126
Sclf-polanlines, 67-70; tetrahedron,
65,,91,7129; triangle, 53-57, 88,
170,

Sem-Euclidean geometry, 187

.’Sense, 31, 100
* Separation, 18, 22, 31, 164, 174

SEvpEWITZ, F., 57, 219

Sine rule, 11, 233, 238

Singly-asymptotic
189, 210

SITTER, Willem de, 209

Skew lines, 21, 42, 63, 133-134

SoMMERVILLE, D. M. VY, 3, 12, 04,
95, 143, 198, 222, 227, 229, 237-
240, 257-260

Space, see Curvature, Finite, Homo-
geneous

Special linear complex, 92

Sphere, 218, 255, 258

Spherical geometry, 6, 10-13, 259,
264; trigonometry, 8, 232

STACKEL, Paul, 6

Sravpr, G. K. C, von, 18, 22, 40,
44, 48.66, 70-77, 219

StEINER, Jacob, 18, 48, 58, 219

STEPHANOS, Cyparissos, 120, 237

188,

triangle,



Zeuthen]

Stereographic projection, 258, 264
Stupy, Eduard, 146, 151-156
Subtraction of points, 71
Summation convention, 83
Supplementary angles, 113, 181;
rays, 162; segments, 31, 100
SYLVESIER, ], ]., 109, 118
Symmetry of parallelism, 176

Tangential coordinates, 79, 87;
equations, 80, 122, 228

Tangent line, 56, 68, 117, 126 195,
221; plane, 62, 68

TAURINUS, F.A, S8 238

Tetrahedron, 26, 33; see alse Self-
polar, Volume; of reference, 87,
91

TEALES, 1

Third order contact, 218

Tractraid, 257

Transformation, 17, 120; see olsd

Congruent, Coordinate, Fragtion.
al, Linear, Orthogonal .8
Transitivity of parallcliseipd77
Translation, 97, 104.106) 112, 135-
142, 149, 155, 20£-204; continu-
ous, 101-103, 21&
Trebiy asympt\t)c, 188, 210, 240,
244, 245 L
Trlang]e,\\&h 57, 200, 220-223, 257;

see ghga® Angle-bisector, Angle-

sum,'Area, Colunar, Diagonal,.

. Doubly-asymptotxc Polar, Right-

\ angled Setf-polar, Singly-asymp-
totic, Trebly-asymptotic; of refer-
ence, 78, 86, 229-240

INDEX 281

Trigonometry, 8, 104; see also Eliip-
tic, Hyperbotic

Trihedron, 14, 164

Trilinear coordinates, 237; polarity,
30, B2, 79, 160, 221, 230

Trirectangle, 6, 194

Tucker, A, W., 145

Types of polarity, 67-69 C N

Ultra-infinite, 192, 195, eo(r 225,
239

Ultra-paralle! lines/ ‘]}8 191, 199,
204

Uniform pO].(;l vy 66, 91, 95, 128,

14 ¢*{

Unit of m\asurement 6, 103, 201,
206, 247-242, 250, 265

Unit point, 78

.;: S}amn, Giovanni, 18, 22

* VeBLEN, Oswald, 17, 18, 22, 23, 27,
31-34, 72-74, 86, 91-94, 101-103,
157, 161-175, 202, 203, 218

Vector {localized), 119, 137
Volume of a tetrahedron, 9, 247
voN SravnT, ., K, C., see Staudt

WacsTER, F. L., 7, 220
WaLLis, John, 2

WHiTzaEAD, A, N, 1680, 166-173
Woon, P, W, 93

Youxe, J. W., 17, 27, 31, 72-T4, 83,
94, 218

ZevuteeN, H. G., 48

N
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